我校2016$\thicksim$2017学年度(上期)半期高三(理科)考试第12题

已知奇函数\(f(x)\)的定义域是\((-1,0)\bigcup\hspace{0.05cm}(0,1)\),\(f(\dfrac{1}{2})=0\),

当\(x>0\)时,总有\(f'(x)\cos x>2f(x)\sin x\)成立(其中\(f'(x)\)

为函数\(f(x)\)的导函数), 则不等式\(f(\log_2 x)>0\)的解集为\(\underline{\qquad\blacktriangle\qquad}.\)


【大致思路】关键的环节是构造符合\(f'(x)\cos x>2f(x)\sin x\)

的函数,如何构造呢?那么请出我们的九大金刚之“常微分方程”,

鉴于太超纲了,因此我们也不用搞清楚它的道理,只需要牢牢掌握

套路就行了。好,现在来看这种套路的过程:

\(f'(x)\cos x>2f(x)\sin x\Rightarrow f'(x)\cos x=2f(x)\sin x\)(“不等”变“等”)

\(\Rightarrow \dfrac{f'(x)}{f(x)}=\dfrac{2\sin x}{\cos x}\)("参变"分离)

\(\Rightarrow \ln f(x)=-2\ln\cos x\)(两边积分)这步最关键

\(\Rightarrow \ln f(x)=\ln\dfrac{1}{\cos^2 x}\)(“两脚穿鞋”)

\(\Rightarrow f(x)=\dfrac{1}{\cos^2 x}\)(“赤脚上阵”)

\(\Rightarrow \cos^2 x f(x)=1\)(变量归“一”)

\(\Rightarrow\)构造函数\(h(x)=\cos^2 x f(x)\)

验证:\((\cos^2 x f(x))'=\cos^2xf'(x)-2\cos x\sin xf(x)=\cos x[\cos xf'(x)-2\sin xf(x)]\)

\(\Rightarrow (\cos^2 x f(x))'>0\Rightarrow\)当\(x>0,h(x)\)单调递增

\(\Rightarrow\)当\(x>0,h(\log_2x)=\cos^2(\log_2x)f(\log_2x)>0=\cos^2(\frac{1}{2})f(\frac{1}{2})=h(\frac{1}{2})\),后面略\(.\)

哈哈!搞定!


同事余登超老师提供如下构造法:

\(\Rightarrow f'(x)\cos x-f(x)\sin x>f(x)\sin x\)

令\(F(x)=f(x)\cos x\Rightarrow F'(x)>f(x)\sin x\Rightarrow F'(x)>F(x)\dfrac{\sin x}{\cos x}\)

\(\Rightarrow F'(x)\cos x-F(x)\sin x>0\Rightarrow (F(x)\cos x)'>0\Rightarrow (f(x)\cos^2x)'>0\)

哈哈!也搞定!


【练习1】已知函数\(f(x)\)的定义域为\((0,+\infty)\),且满足\(f'(x)>(1+\dfrac{1}{x})f(x)\)和\(f(1)=1\),则不等式

\(f(x)<x\text{e}^{x-1}\)的解集为\(\underline{\qquad\blacktriangle\qquad}.\)



【练习2】已知函数\(f(x)\)的定义域为\((0,+\infty)\),且满足\(xf'(x)-2f(x)=x^3\ln x\)和\(f(\text{e})=\text{e}^2\),则函数\(f(x)\)

在\((0,+\infty)\)上\(\underline{\qquad\blacktriangle\qquad}\)

A.有极大值,无极小值

B.有极小值,无极大值

C.既有极大值,又有极小值

D.既无极大值,又无极小值


【练习3】已知函数\(f(x)\)的定义域为\((-\infty,+\infty)\),且满足\(f(1+x)+f(1-x)=0\)和\(f(2)=0\),

当\(x>1\)时,\(f'(x)+f(x)>0\),则不等式\(f(x)\ln |x-1|<0\)的解集为\(\underline{\qquad\blacktriangle\qquad}.\)


高考数学九大超纲内容(1)wffc的更多相关文章

  1. JSP页面以及JSP九大隐式对象

    €JSP全称是Java Server Pages,它和servle技术一样,都是SUN公司定义的一种用于开发动态web资源的技术. €JSP这门技术的最大的特点在于,写jsp就像在写html,但它相比 ...

  2. android ListView 九大重要属性详细分析、

    android ListView 九大重要属性详细分析. 1.android ListView 一些重要属性详解,兄弟朋友可以参考一下. 首先是stackFromBottom属性,这只该属性之后你做好 ...

  3. jsp学习--JSP运行原理,九大隐式对象和JSP常用标签

    一.JSP运行原理 每个JSP 页面在第一次被访问时,WEB容器都会把请求交给JSP引擎(即一个Java程序)去处理.JSP引擎先将JSP翻译成一个_jspServlet(实质上也是一个servlet ...

  4. JSP JSP工作原理 JSP语法 JSP声明 JSP注释 JSP指令 jsp九大隐式/内置对象

    1 什么是JSP   1)为什么说,Servlet是一个动态Web开发技术呢?     Servlet是基于服务端的一种动态交互技术,     HttpServletRequest表示客户端到服务端的 ...

  5. JSP的学习(6)——九大隐式对象及其out对象

    本篇将介绍JSP中的九大隐式对象,并重点介绍其中的out对象. 我们在之前的博客<JSP的学习(1)——基础知识与底层原理>一文中已经知道,JSP最终要被翻译和转换成Servlet,在转换 ...

  6. 【分享】改变未来的九大算法[pdf][清晰扫描版]

    [下载地址]http://www.colafile.com/file/1179688 图书信息:中文名: 改变未来的九大算法作者: 约翰·麦考密克译者: 管策图书分类: 软件资源格式: PDF版本: ...

  7. JSP中的九大隐式对象及四个作用域

    在这篇博文中,我们将讨论和学习JSP中的隐式对象及四个作用域. 一.九大隐式对象 这些对象是JSP容器为每个页面中的开发人员提供的Java对象,开发人员可以直接调用它们而不用显式地声明它们再调用. J ...

  8. JQuery九大选择器

    九大选择器都是用来查找元素节点的.JQuery给我提供了九中类型的选择器. 1. 基本选择器  基本选择器是JQuery最常用的选择器,也是最简单的选择器,它通过元素id.class和标签名来查找DO ...

  9. jQuery九大选择器和jQuery对ajax的支持

    一.jQuery九大选择器 1)基本选择器: <body> <div id="div1ID">div1</div> <div id=&qu ...

随机推荐

  1. 搭建ORACLE11g_RAC_单实例_ADG 注意事项

    搭建ORACLE11g_RAC_单实例_ADG 建库时候的注意事项:实例名为orcl1SYS@orcl1>select instance_name from v$instance; INSTAN ...

  2. ubuntu的无线网无法连上

    自己的笔记本可以连上wireless,但是实验室的台式机无法连上. 有无线显示,就是无法连上. 后来把连在机箱上的网线拔了以后可以连无线了.如果有网线连接,系统优先会选择有线的上网.

  3. JS实现数组排序:升序和降序

    如果指明了 compareFunction ,那么数组会按照调用该函数的返回值排序.即 a 和 b 是两个将要被比较的元素: 如果 compareFunction(a, b) 小于 0 ,那么 a 会 ...

  4. autoprefixer不起作用的坑

    概述 今天同事说,nuxt.js的项目好像没有自动加前缀,我花了很长时间查找原因,最后终于发现,原来是没有加.browserslistrc文件...记录下来,供以后开发时参考,相信对其他人也有用. b ...

  5. WPF使用BindingListCollectionView 和 ListCollectionView 视图排序集合

    当将一个集合或DataTable绑定到ItemsControl控件时,在后对台会自动地创建数据视图,这个视图位于数据源和绑定的控件之间,数据视图是进行数据源的窗口.它跟踪当前项,并且提供各种功能,如排 ...

  6. replace()函数

    1  https://jingyan.baidu.com/article/454316ab4d0e64f7a6c03a41.html

  7. 【Qt开发】设置Qt应用程序图标

    [Qt开发]设置Qt应用程序图标 标签:[Qt开发] 首先,准备一个图标,例如:zx.ico,并新建一个文本文档,在里面添加一行: IDI_ICON1 ICON DISCARDABLE"zx ...

  8. EF Core 初始化数据库的两种方法。

    使用DbContextSeed初始化数据库 添加链接字符串 // This method gets called by the runtime. Use this method to add serv ...

  9. numpy数组的运算

    numpy数组的运算 数组的乘法 >>> import numpy as np >>> arr=np.array([[1,2,3],[4,5,6]]) >&g ...

  10. mysql之sql性能调优

    sql调优大致分为两步:1 如何定位慢查询   2 如何优化sql语句. 一:定位慢查询 -- 显示到mysql数据库的连接数 -- show status like 'connections'; - ...