最近在使用Spring Cloud进行分布式微服务搭建,顺便对集成KafKa的方案做了一些总结,今天详细介绍一下KafKa集群安装过程:

1. 在根目录创建kafka文件夹(service1、service2、service3都创建)

[root@localhost /]# mkdir kafka

2.通过Xshell上传文件到service1服务器:上传kafka_2.9.2-0.8.1.1.tgz到/software文件夹

3.远程copy将service1下的/software/kafka_2.9.2-0.8.1.1.tgz到service2、service3

[root@localhost software]# scp -r /software/kafka_2.9.2-0.8.1.1.tgz root@192.168.2.212:/software/

[root@localhost software]# scp -r /software/kafka_2.9.2-0.8.1.1.tgz root@192.168.2.213:/software/

3.copy /software/kafka_2.9.2-0.8.1.1.tgz到/kafka/目录(service1、service2、service3都执行)

[root@localhost software]# cp /software/kafka_2.9.2-0.8.1.1.tgz /kafka/

4.安装解压kafka_2.9.2-0.8.1.1.tgz(service1、service2、service3都执行)

[root@localhost /]# cd /kafka/

[root@localhost kafka]# tar -zxvf kafka_2.9.2-0.8.1.1.tgz

5.创建kafka消息目录(service1,service2,service3都要创建)

[root@localhost kafka]# mkdir kafkaLogs

6. 修改kafka的配置文件(service1,service2,service3都要配置)

[root@localhost /]# cd /kafka/kafka_2.9.2-0.8.1.1/

[root@localhost kafka_2.9.2-0.8.1.1]# cd config/

[root@localhost config]# ls

consumer.properties  log4j.properties  producer.properties  server.properties  test-log4j.properties  tools-log4j.properties  zookeeper.properties

[root@localhost config]# vi server.properties

# Licensed to the Apache Software Foundation (ASF) under one or more

# contributor license agreements.  See the NOTICE file distributed with

# this work for additional information regarding copyright ownership.

# The ASF licenses this file to You under the Apache License, Version 2.0

# (the "License"); you may not use this file except in compliance with

# the License.  You may obtain a copy of the License at

#

#    http://www.apache.org/licenses/LICENSE-2.0

#

# Unless required by applicable law or agreed to in writing, software

# distributed under the License is distributed on an "AS IS" BASIS,

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

# See the License for the specific language governing permissions and

# limitations under the License.

# see kafka.server.KafkaConfig for additional details and defaults

############################# Server Basics #############################

# The id of the broker. This must be set to a unique integer for each broker.

broker.id=0  ---唯一标识

############################# Socket Server Settings #############################

# The port the socket server listens on

port=19092  --当前broker对外提供的TCP端口,默认9092

# Hostname the broker will bind to. If not set, the server will bind to all interfaces

host.name=192.168.2.213  --一般是关闭状态,我们要将它打开,如果dns解析失败,会出现文件句柄泄露,不要小看dns解析失败率,如果dns解析失败率为万分之一,由于kafka的性能非常高,每个topic的每个分区,每秒可以处理十万多条的数据,即使万分之一的失败率,每秒也要泄露10个文件句柄,很快句柄数就会泄露完毕,就会超过linux打开文件的数,就会出现异常,所以我们配置ip,就不会进行dns解析

# Hostname the broker will advertise to producers and consumers. If not set, it uses the

# value for "host.name" if configured.  Otherwise, it will use the value returned from

# java.net.InetAddress.getCanonicalHostName().

#advertised.host.name=<hostname routable by clients>

# The port to publish to ZooKeeper for clients to use. If this is not set,

# it will publish the same port that the broker binds to.

#advertised.port=<port accessible by clients>

# The number of threads handling network requests

num.network.threads=2   --broker网络处理的线程数,一般不做处理

# The number of threads doing disk I/O

num.io.threads=8  --broker io处理的线程数,这个数量一定要比log.dirs的目录数要大

# The send buffer (SO_SNDBUF) used by the socket server

socket.send.buffer.bytes=1048576  --将发送的消息先放到缓冲区,当到达一定量的时候再一次性发出

# The receive buffer (SO_RCVBUF) used by the socket server

socket.receive.buffer.bytes=1048576  --kafka接受消息的缓冲区,当接受的数量达到一定量的时候再写入磁盘

# The maximum size of a request that the socket server will accept (protection against OOM)

socket.request.max.bytes=104857600   --像kafka发送或者请求消息的最大数,此设置不能超过java堆栈大小

############################# Log Basics #############################

# A comma seperated list of directories under which to store log files

log.dirs=/kafka/kafkaLogs  --多个目录可以用,隔开

# The default number of log partitions per topic. More partitions allow greater

# parallelism for consumption, but this will also result in more files across

# the brokers.

num.partitions=2  --一个topic默认分区数

############################# Log Flush Policy #############################

# Messages are immediately written to the filesystem but by default we only fsync() to sync

# the OS cache lazily. The following configurations control the flush of data to disk.

# There are a few important trade-offs here:

#    1. Durability: Unflushed data may be lost if you are not using replication.

#    2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.

#    3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to exceessive seeks.

# The settings below allow one to configure the flush policy to flush data after a period of time or

# every N messages (or both). This can be done globally and overridden on a per-topic basis.

# The number of messages to accept before forcing a flush of data to disk

#log.flush.interval.messages=10000

# The maximum amount of time a message can sit in a log before we force a flush

#log.flush.interval.ms=1000

############################# Log Retention Policy #############################

# The following configurations control the disposal of log segments. The policy can

# be set to delete segments after a period of time, or after a given size has accumulated.

# A segment will be deleted whenever *either* of these criteria are met. Deletion always happens

# from the end of the log.

# The minimum age of a log file to be eligible for deletion

log.retention.hours=168

message.max.byte=5048576   --kafka每条消息容纳的最大大小

default.replication.factor=2  --默认的复制因子,默认消息只有一个副本,不太安全,所以设置为2,如果某个分区的消息失败了,我们可以使用另一个分区的消息服务

replica.fetch.max.byte=5048576 --kafka每条消息容纳的最大大小

# A size-based retention policy for logs. Segments are pruned from the log as long as the remaining

# segments don't drop below log.retention.bytes.

#log.retention.bytes=1073741824

# The maximum size of a log segment file. When this size is reached a new log segment will be created.

log.segment.bytes=536870912  --消息持久化的最大大小

# The interval at which log segments are checked to see if they can be deleted according

# to the retention policies

log.retention.check.interval.ms=60000

# By default the log cleaner is disabled and the log retention policy will default to just delete segments after their retention expires.

# If log.cleaner.enable=true is set the cleaner will be enabled and individual logs can then be marked for log compaction.

log.cleaner.enable=false  --不使用log压缩

############################# Zookeeper #############################

# Zookeeper connection string (see zookeeper docs for details).

# This is a comma separated host:port pairs, each corresponding to a zk

# server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".

# You can also append an optional chroot string to the urls to specify the

# root directory for all kafka znodes.

zookeeper.connect=192.168.2.211:2181,192.168.2.212:2181,192.168.2.213:2181   --zk地址

# Timeout in ms for connecting to zookeeper

zookeeper.connection.timeout.ms=1000000

7.启动kafka服务

[root@localhost bin]# ./kafka-server-start.sh -daemon ../config/server.properties

[root@localhost bin]# jps

27413 Kafka

27450 Jps

17884 QuorumPeerMain

8.验证kafka集群

[root@localhost bin]# ./kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 2 --partitions 1 --topic test

Created topic "test".

9.在service1上开启producer程序

./kafka-console-producer.sh --broker-list 192.168.2.211:9092 --topic test

[root@localhost bin]# ./kafka-console-producer.sh --broker-list 192.168.2.211:9092 --topic test

SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".

SLF4J: Defaulting to no-operation (NOP) logger implementation

SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.

10. 在service2上开启consumer程序

[root@localhost bin]# ./kafka-console-consumer.sh --zookeeper localhost:2181 --topic test --from-beginning

SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".

SLF4J: Defaulting to no-operation (NOP) logger implementation

SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.

11.在producer中发送消息:hello honghu

[root@localhost bin]# ./kafka-console-consumer.sh --zookeeper localhost:2181 --topic test --from-beginning

SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".

SLF4J: Defaulting to no-operation (NOP) logger implementation

SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.

hello honghu

12. 在consumer中接受到消息

[root@localhost bin]# ./kafka-console-consumer.sh --zookeeper localhost:2181 --topic test --from-beginning

SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".

SLF4J: Defaulting to no-operation (NOP) logger implementation

SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.

hello honghu    源码来源

KafKa集群安装详细步骤的更多相关文章

  1. hadoop 2.2.0集群安装详细步骤(简单配置,无HA)

    安装环境操作系统:CentOS 6.5 i586(32位)java环境:JDK 1.7.0.51hadoop版本:社区版本2.2.0,hadoop-2.2.0.tar.gz 安装准备设置集群的host ...

  2. redis3.0.0 集群安装详细步骤

    Redis集群部署文档(centos6系统) Redis集群部署文档(centos6系统) (要让集群正常工作至少需要3个主节点,在这里我们要创建6个redis节点,其中三个为主节点,三个为从节点,对 ...

  3. Redis集群安装详细步骤

    环境: Centos7    redis3.0 三台虚拟机主机名分别为 master   node1  node2 如果单机的时候设置过密码最好把密码去掉,避免位置的错误. 拍个快照方便恢复. 1.创 ...

  4. KafKa集群安装、配置

    一.事前准备 1.kafka官网:http://kafka.apache.org/downloads. 2.选择使用版本下载. 3.kafka集群环境准备:(linux) 192.168.145.12 ...

  5. kafka集群安装部署

    kafka集群安装 使用的版本 系统:centos6.5 centos6.7 jdk:1.7.0_79 zookeeper:3.4.9 kafka:2.10-0.10.1.0 一.环境准备[只列,不具 ...

  6. Kafka 集群安装

    Kafka 集群安装 环境: Linux 7.X kafka_2.x 在linux操作系统中,kafka安装在 /u04/app目录中 1. 下载 # wget https://mirrors.cnn ...

  7. zookeeper+kafka集群安装之二

    zookeeper+kafka集群安装之二 此为上一篇文章的续篇, kafka安装需要依赖zookeeper, 本文与上一篇文章都是真正分布式安装配置, 可以直接用于生产环境. zookeeper安装 ...

  8. zookeeper+kafka集群安装之一

    zookeeper+kafka集群安装之一 准备3台虚拟机, 系统是RHEL64服务版. 1) 每台机器配置如下: $ cat /etc/hosts ... # zookeeper hostnames ...

  9. zookeeper+kafka集群安装之中的一个

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/cheungmine/article/details/26678877 zookeeper+kafka ...

随机推荐

  1. 2019ICPC徐州游记

    裂开QAQ 热身赛听隔壁电科的猛男们说赛前别做题,结果我们3个憨憨还是跑到网吧打哈尔滨的重现赛.结果真的炸裂了,队友D被E题卡哭了,我和队友Z被I题搞炸. 回宾馆的路上都害怕明天裂开. 果然想什么坏事 ...

  2. 模板 - Prim

    Kruskal算法要对边排序,然后打个并查集维护,但是实际上Prim有他好玩的地方,就把Dijkstra的到点的距离从dis[v]:dis[u]+w改成边dis[v]:w. 那肯定是Prim好写一点. ...

  3. P2496 [SDOI2012]体育课

    传送门 分块 对每个块维护一个 $add$ 和 $del$ 标记,对于块 $o$ 内某个位置 $i$,它真实的修改量为 $a[i]+add[o]*i-del[o]$ 这样就可以维护一个区间加一个等差数 ...

  4. CentOS6.6安装使用MyCat

    https://blog.csdn.net/u012948302/article/details/78902092 1. 安装Java环境MyCAT 是使用 JAVA 语言进行编写开发,使用前需要先安 ...

  5. Jquery复习(七)之尺寸

    jQuery 尺寸 方法 jQuery 提供多个处理尺寸的重要方法: width() height() innerWidth() innerHeight() outerWidth() outerHei ...

  6. node.js使用express模块创建web服务器应用

    1.安装express模块 在命令行输入 npm install body-parser --save npm install express --save 2.创建app.js文件 /*应用程序入口 ...

  7. MySQL基础入门之常用命令介绍

    mysql命令介绍 mysql 是数据库管理命令 通过mysql --help来查看相关参数及使用说明 mysql --help                #mysql数据库管理命令 Usage: ...

  8. MySQL之常用SQL语句

    1) 分表之后统计数据的总量 SELECT (a0.total + a1.total + a2.total + a3.total + a4.total + a5.total + a6.total + ...

  9. 响应式前端框架Bootstrap系列(11)分页

    分页功能已经封装成一个独立的js文件,也是用bs完成的,名称为bootstrap-paginator.js. 使用前先导入文件 : <script src="../libs/boots ...

  10. openlayers 添加标记点击弹窗 定位图标闪烁

    环境vue3.0 ,地图为公用组件,将添加图标标记的方法放在公共地图的初始化方法里 同一时间弹窗和定位标识都只有一个,因而我把弹窗和定位标记的dom预先写好放到了页面 //矢量标注样式设置函数,设置i ...