kNN算法实例(约会对象喜好预测和手写识别)
import numpy as np
import operator
import random
import os def file2matrix(filePath):#从文本中提取特征矩阵和标签
f = open(filePath,'r+').readlines()
fileLength = len(f)
dataSet = np.zeros((fileLength,3),np.float64)
labelList = []
for i in range(fileLength):
row = f[i].split('\t')
dataSet[i,:] = row[0:3]
labelList.append(row[-1].strip('\n'))
return dataSet,labelList def autoNormal(data):#归一化处理
dataShape = data.shape
dataMin = data.min(0)
dataMax = data.max(0)
normalDataSet = np.zeros(dataShape,np.float64)
diff = dataMax - dataMin
normalDataSet = (data -np.tile(dataMin,(dataShape[0],1)))/np.tile(diff,(dataShape[0],1))
return normalDataSet,diff,dataMin def dataClassTest(dataSet,labelList):#测试算法准确率
ratio = 0.1
correntCount = 0
testNumber = int(ratio*dataSet.shape[0])
for i in range(testNumber):
k = random.randint(0, dataSet.shape[0])
label = classify0(dataSet[k],dataSet,labelList,20)
if label == labelList[k]:
correntCount += 1
return correntCount*100/testNumber def classifyPerson():#输入数据进行预测
dataSet,labelSet = file2matrix('datingTestSet.txt')
percentTats = float(input('Please input percentage of time spend playing video games?'))
miles = float(input('Please input frequent flier miles earned per year?'))
cream = float(input('Please input liters of ice cream consumed per year?'))
dataSet,diff,dataMin = autoNormal(dataSet)
intX = np.array([percentTats,miles,cream],np.float64) label = classify0((intX-dataMin)/diff,dataSet,labelSet,20)
print("You likely {0} the man!".format(label)) correntPercent = dataClassTest(dataSet,labelSet)
print("The estimate corrent percent is {0}%!".format(correntPercent)) def classify0(intX,dataSet,labelSet,k):#kNN分类算法
intX = np.tile(intX,(dataSet.shape[0],1))
square = (intX - dataSet)**2
sum = square.sum(axis=1)
sqrt = sum**0.5
sortedDistIndicies = sqrt.argsort()
classCount={}
for i in range(k):
label = labelSet[sortedDistIndicies[i]]
classCount[label] = classCount.get(label,0)+1
sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True) return sortedClassCount[0][0] def img2vector(filename):#将32*32图片转换成1*1024向量
vector = np.zeros((1,1024))
f = open(filename)
for i in range(32):
fr = f.readline()
for j in range(32):
vector[0,32*i+j] = int(fr[j])
return vector def handwritingClassTest():
filenameList = os.listdir(r'machinelearninginaction\Ch02\digits\trainingDigits')
m = len(filenameList)
trainLabelList = []
trainDataMatrix = np.zeros((m,1024))
for i in range(m):
trainLabelList.append(int(filenameList[i].strip('_')[0]))
trainDataMatrix[i,:] = img2vector(r'machinelearninginaction\Ch02\digits\trainingDigits\{0}'.format(filenameList[i]))
filenameList = os.listdir(r'machinelearninginaction\Ch02\digits\testDigits')
m = len(filenameList)
corrent = 0.0
for i in range(m):
testLabel = int(filenameList[i].strip('_')[0])
testIn = img2vector(r'machinelearninginaction\Ch02\digits\testDigits\{0}'.format(filenameList[i]))
testOut = classify0(testIn,trainDataMatrix,trainLabelList,3)
if testOut == testLabel:
corrent += 1
else:
print("Error:the classifier came back with:{0}, the real answer is:{1}。".format(testOut,testLabel))
print("the corrent percent is:%.2f %%。"%(corrent*100/m))
if __name__ == '__main__':
classifyPerson() #约会预测
#handwritingClassTest() #手写识别
约会预测运行结果:
Please input percentage of time spend playing video games?100
Please input frequent flier miles earned per year?8
Please input liters of ice cream consumed per year?200
You likely didntLike the man!
The estimate corrent percent is 96.0%! 进程已结束,退出代码 0
手写识别运行结果:
Error:the classifier came back with:7, the real answer is:1。
Error:the classifier came back with:9, the real answer is:3。
Error:the classifier came back with:3, the real answer is:5。
Error:the classifier came back with:6, the real answer is:5。
Error:the classifier came back with:6, the real answer is:8。
Error:the classifier came back with:3, the real answer is:8。
Error:the classifier came back with:1, the real answer is:8。
Error:the classifier came back with:1, the real answer is:8。
Error:the classifier came back with:1, the real answer is:9。
Error:the classifier came back with:7, the real answer is:9。
the corrent percent is:98.94 %。 进程已结束,退出代码 0
测试数据:


说明:代码参考《机器学习实战》
kNN算法实例(约会对象喜好预测和手写识别)的更多相关文章
- 吴裕雄--天生自然python机器学习实战:K-NN算法约会网站好友喜好预测以及手写数字预测分类实验
实验设备与软件环境 硬件环境:内存ddr3 4G及以上的x86架构主机一部 系统环境:windows 软件环境:Anaconda2(64位),python3.5,jupyter 内核版本:window ...
- 第二篇:基于K-近邻分类算法的约会对象智能匹配系统
前言 假如你想到某个在线约会网站寻找约会对象,那么你很可能将该约会网站的所有用户归为三类: 1. 不喜欢的 2. 有点魅力的 3. 很有魅力的 你如何决定某个用户属于上述的哪一类呢?想必你会分析用户的 ...
- k最邻近算法——使用kNN进行手写识别
上篇文章中提到了使用pillow对手写文字进行预处理,本文介绍如何使用kNN算法对文字进行识别. 基本概念 k最邻近算法(k-Nearest Neighbor, KNN),是机器学习分类算法中最简单的 ...
- python 实现 KNN 分类器——手写识别
1 算法概述 1.1 优劣 优点:进度高,对异常值不敏感,无数据输入假定 缺点:计算复杂度高,空间复杂度高 应用:主要用于文本分类,相似推荐 适用数据范围:数值型和标称型 1.2 算法伪代码 (1)计 ...
- 机器学习实战一:kNN手写识别系统
实战一:kNN手写识别系统 本文将一步步地构造使用K-近邻分类器的手写识别系统.由于能力有限,这里构造的系统只能识别0-9.需要识别的数字已经使用图形处理软件,处理成具有相同的色彩和大小:32像素*3 ...
- TensorFlow 入门之手写识别(MNIST) softmax算法
TensorFlow 入门之手写识别(MNIST) softmax算法 MNIST flyu6 softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算 ...
- 机器学习实战kNN之手写识别
kNN算法算是机器学习入门级绝佳的素材.书上是这样诠释的:“存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都有标签,即我们知道样本集中每一条数据与所属分类的对应关系.输入没有标签的新数据 ...
- TensorFlow 入门之手写识别(MNIST) softmax算法 二
TensorFlow 入门之手写识别(MNIST) softmax算法 二 MNIST Fly softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算 ...
- TensorFlow MNIST(手写识别 softmax)实例运行
TensorFlow MNIST(手写识别 softmax)实例运行 首先要有编译环境,并且已经正确的编译安装,关于环境配置参考:http://www.cnblogs.com/dyufei/p/802 ...
随机推荐
- ln -在文件之间建立连接
总览 ln [options] source [dest] ln [options] source...directory POSIX 选项: [-f] GNU 选项(缩写): [-bdfinsvF] ...
- C#基础知识之System.AppDomain类
进程是存在独立的内存和资源的,但是AppDomain仅仅是逻辑上的一种抽象.一个process可以存在多个AppDomain.各个AppDomain之间的数据时相互独立的.一个线程可以穿梭多个AppD ...
- C#基础知识之正则表达式
正则表达式 是一种匹配输入文本的模式..Net 框架提供了允许这种匹配的正则表达式引擎.模式由一个或多个字符.运算符和结构组成. 实例 下面的实例匹配了以 'S' 开头的单词: using Syste ...
- CF547E Mike and Friends
子串看起来就很SuffixStructures 于是上SAM 本来想着直接LCT 后来发现没法串定位(暴力匹配复杂度不对) 然后就离线吧,先建出来然后链加子树和,树剖就odk. 其实更直接的套路是线段 ...
- C# 实战笔记
http://www.cnblogs.com/ymnets/p/3424514.html 学习点 关于IEnumerable和IQueryable两接口的区别 二者都是静态类 区另主要在: (1)所有 ...
- Win10 设置系统时间
- PHP入门培训教程PHP程序员要掌握哪些技术
总有那么一群人,学个半吊子就急着找工作,面试题做不出来,吹牛都吹不来所以你只能低工资.PHP程序员要掌握哪些技术?那么兄弟连PHP培训 就来小结一下. 面试前请参考:(前三阶段完成80%在北京月薪5k ...
- mysql TOP语句 语法
mysql TOP语句 语法 作用:用于规定要返回的记录的数目. 语法:SELECT column_name(s) FROM table_name LIMIT number 说明:对于拥有数千条记录的 ...
- 跳马(Knight Moves), ZOJ1091, POJ2243 x
跳马(Knight Moves), ZOJ1091, POJ2243 题目描述: 给定象棋棋盘上两个位置 a 和 b,编写程序,计算马从位置 a 跳到位置 b 所需步数的最小值. 输入描述: 输入文件 ...
- Oracle Where子句
Oracle Where子句 作者:初生不惑 Oracle基础 评论:0 条 Oracle技术QQ群:175248146 在本教程中,将学习如何使用Oracle WHERE子句来指定过滤的条件返回符合 ...