[CSP-S模拟测试]:stone(结论+桶+前缀和+差分)
题目描述
$Cab$有两行石子,每个石子上有一个字母,为$'C''A''B'$中的一个。
一开始,在每行第一个石子上站着一只$lucky$,$Cab$每次可以选择一个字母,使得所站石子上字母为该字母的$lucky$向前走一步,如果此时$lucky$已经到了一行石子的结尾就会掉出去,$Cab$显然不会这么做。
一个数对$(x,y)$是$lucky$的,当且仅当在$lucky$不掉出去的前提下,通过一些操作能使第一行的$lucky$处于第$x$个石子的同时第二只$lucky$处于第$y$个石子。
请求出有多少个$lucky$的数对。
输入格式
第一行一个长度为$n$的字符串表示第一行石子。
第二行一个长度为$m$的字符串表示第二行石子。
输出格式
输出一个答案表示$lucky$的数对个数。
样例
样例输入:
CAB
ABCAB
样例输出:
11
数据范围与提示
对于$30\%$的数据:$n\leqslant 1,000,m\leqslant 1,000$。
对于另$30\%$的数据:$n\leqslant 50,000,m\leqslant 50,000$,且两个字符串中只含有两种字母。
对于$100\%$的数据:$n\leqslant 1,000,000,m\leqslant 1,000,000$。
题解
官方题解画了一堆图,我也没看懂。
对于第一个串中的每一个点,其有一个覆盖范围$(l,r)$,可以用贪心的思想,$l$即为尽可能让其不动;$r$则为尽可能让它动;注意边界即可。
但是打个表会发现,这中间有一些点还是不能取到;再认真看一下,会发现对于当前点$a_i$,如果$a_i=b_j$且$a_{i-1}=b_{j+1}$,那么这个$(i,j)$是不可取的。
那么答案就是:
$$ans=\sum \limits_{i=1}^n r_i-l_i+1-num[i]$$
上式中的$num[i]$即为$l_i\sim r_i$中$a_i=b_j$且$a_{i-1}=b_{j+1}$的个数。
$num$数组可以用桶$+$前缀和$+$差分处理。
如果你发现$WA90$的话可以考虑将两个串的读入顺序交换即可。
时间复杂度:$\Theta(n+m)$。
期望得分:$100$分。
实际得分:$100$分。
代码时刻
#include<bits/stdc++.h>
using namespace std;
int a[1000001],b[1000001],la,lb;
char ch1[1000001],ch2[1000001];
int l[1000001],r[1000001];
int t[1000001][6];
long long ans;
int main()
{
scanf("%s%s",ch1+1,ch2+1);
la=strlen(ch2+1);
lb=strlen(ch1+1);
for(int i=1;i<=la;i++)
a[i]=ch2[i]-'A'+1;
for(int i=1;i<=lb;i++)
b[i]=ch1[i]-'A'+1;
int faill=1,failr=1;
for(int i=1;i<=la;i++)
{
while(a[i]!=b[failr]&&failr<lb)failr++;
l[i]=faill;r[i]=failr;
if(a[i]==b[faill]&&faill<lb)faill++;
if(failr<lb)failr++;
}
for(int i=2;i<=lb;i++)
{
if(b[i-1]==1&&b[i]==2)t[i][0]++;
if(b[i-1]==2&&b[i]==1)t[i][1]++;
if(b[i-1]==1&&b[i]==3)t[i][2]++;
if(b[i-1]==3&&b[i]==1)t[i][3]++;
if(b[i-1]==2&&b[i]==3)t[i][4]++;
if(b[i-1]==3&&b[i]==2)t[i][5]++;
t[i][0]+=t[i-1][0];
t[i][1]+=t[i-1][1];
t[i][2]+=t[i-1][2];
t[i][3]+=t[i-1][3];
t[i][4]+=t[i-1][4];
t[i][5]+=t[i-1][5];
}
ans=r[1]-l[1]+1;
for(int i=2;i<=la;i++)
{
ans+=r[i]-l[i]+1;
if(a[i]==a[i-1])continue;
if(a[i]==1&&a[i-1]==2)ans-=t[r[i]][0]-t[l[i]-1][0];
if(a[i]==2&&a[i-1]==1)ans-=t[r[i]][1]-t[l[i]-1][1];
if(a[i]==1&&a[i-1]==3)ans-=t[r[i]][2]-t[l[i]-1][2];
if(a[i]==3&&a[i-1]==1)ans-=t[r[i]][3]-t[l[i]-1][3];
if(a[i]==2&&a[i-1]==3)ans-=t[r[i]][4]-t[l[i]-1][4];
if(a[i]==3&&a[i-1]==2)ans-=t[r[i]][5]-t[l[i]-1][5];
}
printf("%lld",ans);
return 0;
}
rp++
[CSP-S模拟测试]:stone(结论+桶+前缀和+差分)的更多相关文章
- 第 45 届国际大学生程序设计竞赛(ICPC)亚洲网上区域赛模拟赛. A.Easy Equation (前缀和/差分)
题意:RT,给你四个数\(a,b,c,d\),求\(x+y+z=k\)的方案数. 题解:我们可以先枚举\(x\)的值,然后\(x+y\)能取到的范围一定是\([x,x+b]\),也就是说这个区间内每个 ...
- [CSP-S模拟测试]:电压机制(图论+树上差分)
题目描述 科学家在“无限神机”($Infinity\ Machine$)找到一个奇怪的机制,这个机制有$N$个元件,有$M$条电线连接这些元件,所有元件都是连通的.两个元件之间可能有多条电线连接.科学 ...
- 2019.8.1 NOIP模拟测试11 反思总结
延迟了一天来补一个反思总结 急匆匆赶回来考试,我们这边大家的状态都稍微有一点差,不过最后的成绩总体来看好像还不错XD 其实这次拿分的大都是暴力[?],除了某些专注于某道题的人以及远程爆踩我们的某学车神 ...
- Mockito:一个强大的用于Java开发的模拟测试框架
https://blog.csdn.net/zhoudaxia/article/details/33056093 介绍 本文将介绍模拟测试框架Mockito的一些基础概念, 介绍该框架的优点,讲解应用 ...
- Mock 模拟测试简介及 Mockito 使用入门
Mock 是什么mock 测试就是在测试过程中,对于某些不容易构造或者不容易获取的对象,用一个虚拟的对象来创建以便测试的测试方法.这个虚拟的对象就是mock对象.mock对象就是真实对象在调试期间的代 ...
- noi2019模拟测试赛(四十七)
noi2019模拟测试赛(四十七) T1与运算(and) 题意: 给你一个序列\(a_i\),定义\(f_i=a_1\&a_2\&\cdots\&a_i\),求这个序列的所 ...
- csp-s模拟测试93
csp-s模拟测试93 自闭场. $T1$想到$CDQ$,因为复杂度少看见一个$0$打了半年还用了$sort$直接废掉,$T2$,$T3$直接自闭暴力分都没有.考场太慌了,心态不好. 02:07:34 ...
- csp-s模拟测试91
csp-s模拟测试91 倒悬吃屎的一套题. $T1$认真(?)分析题意发现复杂度不能带$n$(?),计划直接维护答案,考虑操作对答案的影响,未果.突然发现可以动态开点权值线段树打部分分,后来$Tm$一 ...
- csp-s模拟测试89
csp-s模拟测试89 $T1$想了一会儿没什么思路,一看$T2$ $1e18$当场自闭打完暴力就弃了,$T3$看完题感觉要求$lca$和$dep$,手玩了一下样例发现$lca$很显然,$dep$貌 ...
随机推荐
- 洛谷 P2398 GCD SUM 题解
题面 挺有意思的. 设f[i]表示gcd(i,j)=i的个数,g[i]表示k|gcd(i,j)的个数; g[i]=(n/i)*(n/i); g[i]=f[i]+f[2i]+f[3i]+...; 所以f ...
- C#获取局域网主机
C#获取局域网主机 最近在做一个使用MSRDPClient来实现远程桌面功能,需要先判断一下该局域网主机是否在线,所以就需要获取一遍局域网主机. 首先获取本地IP地址,这里需要注意的是,要排除掉虚拟机 ...
- JAVA重写不需要@override
一,如下代码, package com.boot.enable.bootenable; import org.springframework.scheduling.annotation.Async; ...
- QtSpim使用Tips
QtSpim使用记录 垃圾QtSpim,输入中文会死机 MIPS的中文资料奇缺,如果有问题建议google参考英文资料,许多外国大学的网站上有对MIPS各方面的详细介绍 QtSpim是MIPS处理器的 ...
- vue项目兼容es6语法跟IE浏览器
要安装babel-polyfill和es6-promise.用来兼容ie和es6: 附赠链接下载:https://babeljs.io/docs/en/6.26.3/babel-polyfill:ht ...
- Centos6 修复grub损坏故障
1.查看系统中的/boot/grub/grub.conf # grub.conf generated by anaconda # # Note that you do not have to reru ...
- robotframework ride报错 Keyword 'BuiltIn.Log' expected 1 to 5 arguments, got 12.
错误原因,else和else if使用了小写,必须使用大写才能识别到.
- Linux 安装 nginx 安装PCRE库
PCRE(Perl Compatible Regular Expressions)是一个Perl库,包括 perl 兼容的正则表达式库.这些在执行正规表达式模式匹配时用与Perl 5同样的语法和语义是 ...
- Sublime Text2 常用快捷键总结
Ctrl+Tab 当前窗口中的标签页切换 Ctrl+Shift+D 复制光标所在整行,插入在该行之前 Ctrl+Shift+K 删除整行 Ctrl+Shift+/ 注释已选择内容 Ctrl+Shift ...
- golang初识 和 变量,常量,iota
目录 一.go语言与python 1. go语言 2. python 二.变量相关 1. go语言的基本语法 2. 标识符和关键字 3. 变量声明 (1)声明变量时未指定初始值 (2)声明变量时指定初 ...