ICPC2008哈尔滨-E-Gauss Elimination
题目描述
“Do you know how far our voyage is?” The captain asks. Li Zhixiang feels ashamed because he can not answer. Then the captain says with a smile, “5050 miles. Do you still remember the story of 5050?” This time the young man really blushes. The old captain continues saying:” You definitely know the story of 5050. When the German mathematician, “the prince of mathematicians”, Gauss was 10 years old …” Young man remembers this story and goes on to tell, “ When Gauss was 10 years old, he could add a list of integers from 1 to 100 in a few seconds, which shocked the teachers.” The old captain adds, “Gauss has many other stories like this. When he entered the university at the age of 17, he was able to construct heptadecagon by compass and straightedge. His university teachers were also impressed by his ability. Not only could college graduate students fail to do it, but also they felt hard to understand Gauss’s constructing process.”
At this time, vice-captain greets the old captain. The old captain says to Li Zhixiang: “Come over to my office tonight, let’s continue the conversation.” It is still calm and tranquil in the evening. The freighter travels smoothly on the sea in the silver moonlight. The captain tells the young man the following words.
Among the mathematicians through the ages, there are three greatest mathematicians: Archimedes, Newton and Gauss. Most of Gauss’s mathematical achievements are difficult to understand. Nevertheless, there are some comparatively easy. For instance, when it comes to solving multivariate system of linear equations, there is a solution called “Gauss Elimination”. In the navigation business, many problems can be solved by “Gauss elimination”. If you are interested in it, I will show you a simple question. Try it.”
输入
输出
样例输入
2
1000000000000000000000000 1000000000000000000000000 1000000000000000000000000
-1000000000000000000000000 1000000000000000000000000 0
1
0 4
样例输出
1/2
1/2 No solution.
大数分数高斯消元
import java.math.BigInteger;
import java.util.Scanner; class Number{
BigInteger a,b;
Number() {
a=BigInteger.valueOf(1);
b=BigInteger.valueOf(1);
} Number(BigInteger x,BigInteger y) {
a=x;
b=y;
} Number sub(Number x){
Number c=new Number();
c.b=b.multiply(x.b);
c.a=a.multiply(x.b).subtract(x.a.multiply(b));
BigInteger d=c.a.gcd(c.b);
if (d.compareTo(BigInteger.valueOf(0))!=0){
c.a=c.a.divide(d); c.b=c.b.divide(d);
}
return c;
} Number mul(Number x){
Number c=new Number();
c.b=b.multiply(x.b);
c.a=a.multiply(x.a);
BigInteger d=c.a.gcd(c.b);
if (d.compareTo(BigInteger.valueOf(0))!=0){
c.a=c.a.divide(d); c.b=c.b.divide(d);
}
return c;
} Number div(Number x) {
Number c=new Number();
c.b=b.multiply(x.a);
c.a=a.multiply(x.b);
BigInteger d=c.a.gcd(c.b);
if (d.compareTo(BigInteger.valueOf(0))!=0){
c.a=c.a.divide(d); c.b=c.b.divide(d);
}
return c;
} int com(Number x) {
BigInteger p=a.multiply(x.b);
BigInteger q=x.a.multiply(b);
if (p.compareTo(BigInteger.valueOf(0))<0) p=p.multiply(BigInteger.valueOf(-1));
if (q.compareTo(BigInteger.valueOf(0))<0) q=q.multiply(BigInteger.valueOf(-1)); return p.compareTo(q);
}
}
public class Main { public static boolean Guss(int n,Number a[][],Number b[]){
int k=1,col=1;
while (k<=n && col<=n) {
int max_r=k;
for (int i=k+1;i<=n;i++)
if (a[i][col].com(a[max_r][col])>0)
max_r=i;
if (a[max_r][col].com(new Number(BigInteger.valueOf(0),BigInteger.valueOf(1)))==0) return false;
if (k!=max_r) {
for (int j=col;j<=n;j++) {
Number tmp=a[k][j];
a[k][j]=a[max_r][j];
a[max_r][j]=tmp;
}
Number tmp=b[k]; b[k]=b[max_r]; b[max_r]=tmp;
} b[k]=b[k].div(a[k][col]);
for (int j=col+1;j<=n;j++) a[k][j]=a[k][j].div(a[k][col]);
a[k][col].a=BigInteger.valueOf(1);
a[k][col].b=BigInteger.valueOf(1); for (int i=1;i<=n;i++) {
if (i!=k) {
b[i]=b[i].sub(b[k].mul(a[i][col]));
for (int j=col+1;j<=n;j++) a[i][j]=a[i][j].sub(a[k][j].mul(a[i][col]));
a[i][col].a=BigInteger.valueOf(0);
}
}
k++; col++;
}
return true;
} public static void main(String[] args) {
Number a[][] = new Number[105][105];
Number b[] = new Number[105]; for (int i=1;i<=100;i++) {
for (int j=1;j<=100;j++) a[i][j]=new Number();
b[i]=new Number();
}
int n;
Scanner in = new Scanner(System.in);
while (in.hasNext()) {
n=in.nextInt();
for (int i=1;i<=n;i++){
for (int j=1;j<=n;j++){
a[i][j].a = in.nextBigInteger();
a[i][j].b = BigInteger.valueOf(1);
}
b[i].a=in.nextBigInteger();
b[i].b=BigInteger.valueOf(1);
} if (Guss(n,a,b)==true) {
for (int i=1;i<=n;i++) {
BigInteger d=b[i].a.gcd(b[i].b);
if (d.compareTo(BigInteger.valueOf(0))!=0){
b[i].a=b[i].a.divide(d); b[i].b=b[i].b.divide(d);
}
// System.out.println(1+" "+b[i].b+" "+b[i].b.compareTo(BigInteger.valueOf(0)));
if (b[i].b.compareTo(BigInteger.valueOf(0))<0){
// System.out.println("*");
b[i].b=b[i].b.multiply(BigInteger.valueOf(-1));
b[i].a=b[i].a.multiply(BigInteger.valueOf(-1));
}
// System.out.println(2+" "+b[i].b+" "+b[i].b.compareTo(BigInteger.valueOf(0)));
if (b[i].a.compareTo(BigInteger.valueOf(0))==0) b[i].b=BigInteger.valueOf(1);
if (b[i].b.compareTo(BigInteger.valueOf(1))==0) System.out.println(b[i].a);
else System.out.println(b[i].a+"/"+b[i].b);
}
} else System.out.println("No solution."); System.out.println();
}
}
}
ICPC2008哈尔滨-E-Gauss Elimination的更多相关文章
- Gauss elimination Template
Gauss elimination : #include <iostream> #include <cstdlib> #include <cstring> #inc ...
- 高斯消元法(Gauss Elimination)【超详解&模板】
高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵.高斯消元法的原理是:若用初等行变换将增广矩阵 化为 ,则AX = B与CX = D是同解方程组. ...
- HDU2449 Gauss Elimination 高斯消元 高精度 (C++ AC代码)
原文链接https://www.cnblogs.com/zhouzhendong/p/HDU2449.html 题目传送门 - HDU2449 题意 高精度高斯消元. 输入 $n$ 个 $n$ 元方程 ...
- ICPC2008哈尔滨-A-Array Without Local Maximums
题目描述 Ivan unexpectedly saw a present from one of his previous birthdays. It is array of n numbers fr ...
- LU分解(1)
1/6 LU 分解 LU 分解可以写成A = LU,这里的L代表下三角矩阵,U代表上三角矩阵.对应的matlab代码如下: function[L, U] =zlu(A) % ZLU ...
- 线性代数-矩阵-【5】矩阵化简 C和C++实现
点击这里可以跳转至 [1]矩阵汇总:http://www.cnblogs.com/HongYi-Liang/p/7287369.html [2]矩阵生成:http://www.cnblogs.com/ ...
- 线性代数-矩阵-【1】矩阵汇总 C和C++的实现
矩阵的知识点之多足以写成一本线性代数. 在C++中,我们把矩阵封装成类.. 程序清单: Matrix.h//未完待续 #ifndef _MATRIX_H #define _MATRIX_H #incl ...
- 高斯消元 & 线性基【学习笔记】
高斯消元 & 线性基 本来说不写了,但还是写点吧 [update 2017-02-18]现在发现真的有好多需要思考的地方,网上很多代码感觉都是错误的,虽然题目通过了 [update 2017- ...
- bingoyes' tiny dream
Gauss Elimination bool Gauss(){ int now=1,nxt; double t; R(i,1,n){ //enumerate the column for(nxt=no ...
随机推荐
- LeetCode Array Easy 414. Third Maximum Number
Description Given a non-empty array of integers, return the third maximum number in this array. If i ...
- NHibernet Unable to locate persister for the entity
第一 xml文件必须为 *.hbm.xml 第二 设置xml文件为嵌入的资源,用鼠标点击右键 然后生成操作里 选择嵌入的资源即可解决. https://www.cnblogs.com/lyj/
- Session的load和get方法区别是什么?
①如果没有找到符合条件的记录,get方法返回null值,而load方法会抛出异常: ②get方法直接返回实体类对象,load方法返回实体类对象的代理: ③在Hibernate3之前,get方法只在一级 ...
- jQuery遍历之向下遍历
html <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <ti ...
- array_shift — 将数组开头的单元移出数组
<?php $stack = array("orange", "banana", "apple", "raspberry&q ...
- Django框架的学习
目前 Django 1.6.x 以上版本已经完全兼容 Python 3.x. 1. 指定django版本的安装 pip install django =1.11
- 【leetcode】931. Minimum Falling Path Sum
题目如下: Given a square array of integers A, we want the minimum sum of a falling path through A. A fal ...
- c++ fork进程与同步锁
首先定义在多进程环境中的锁,采用读写锁,即可以同时读,但只能单独写. 头文件processLock.h #ifndef PROCESSLOCK_H #define PROCESSLOCK_H #inc ...
- Python--nfs服务+计划任务crond服务+shell介绍
nfs服务 NFS 是Network File System的缩写,即网络文件系统. 功能是通过网络让不同的机器.不同的操作系统能够彼此分享个别的数据,让应用程序在客户端通过网络访问位于服务器磁盘中的 ...
- Python基础教程(006)--Python的特点
前言 了解Python背景,明白Python在目前社会中的标准库是有成千上万的Python爱好者共同维护的. 知识点 Python是完全面相对象的语言 函数,模块,数字,字符串都是对象,在Python ...