Your company provides robots that can be used to pick up litter from fields after sporting events and
concerts. Before robots are assigned to a job, an aerial photograph of the field is marked with a grid.
Each location in the grid that contains garbage is marked. All robots begin in the Northwest corner
and end their movement in the Southeast corner. A robot can only move in two directions, either to
the East or South. Upon entering a cell that contains garbage, the robot can be programmed to pick
it up before proceeding. Once a robot reaches its destination at the Southeast corner it cannot be
repositioned or reused. Since your expenses are directly proportional to the number of robots used for
a particular job, you are interested in making the most out of them. Your task would be to use a robot
to clean the maximum number of cells containing garbage. Now there can be many ways to do this
job, so your task would be to report that number of ways and show us one such sample.
You see your robot can traverse many cells without picking up garbage, so for us a valid solution
would be the sequence of cell numbers that the robot cleans. The robots only clean cells that contain
garbage; but you can program them to avoid picking up garbage from specific cells, if you would want
to.

Figure 1: One 6 × 7 field map Figure 2: Four sample solutions
In the figure above we show a field map that has 6 rows and 7 columns. The cells in a field map
are numbered in row major order starting from 1. For the example shown here, the following 7 cells
contain garbage: 2 (1,2), 4 (1,4), 11 (2, 4), 13 (2, 6), 25 (4, 4), 28 (4, 7) and 41 (6, 7). Here cells are
presented in cell number (row, column) format. Now the maximum number of cells that can be cleaned
is 5, and there are f different ways to do that:
< 2,4,11,13,28 >
< 2,4,11,13,41 >
< 2,4,11,25,28 >
< 2,4,11,25,41 >
Input
An input file consists of one or more field maps followed by a line containing ‘-1 -1’ to signal the end
of the input data. The description of a field map starts with the number of rows and the number of
columns in the grid. Then in the subsequent lines, the garbage locations follows. The end of a field map
is signaled by ‘0 0’. Each garbage location consists of two integers, the row and column, separated by
a single space. The rows and columns are numbered as shown in Figure 1. The garbage locations will
not be given in any specific order. And a location would not be reported twice for a field map. Please
note that for all the test cases you are required to solve, the field map would be of at most 100 rows
and 100 columns.
Output
The output for each test case starts with the serial number (starting from 1) for that test case. Then
the following integers are listed on a line: N the maximum number of cells that the robot can clean, C
the number of ways that these N cells can be cleaned, and N numbers describing one possible sequence
of cell numbers that the robot will clean. As there can be C different such sequences and we are asking
for only one sequence any valid sequence would do. Make sure that all these 2 + N integers for a test
case are printed on a single line. There must be one space separating two consecutive integers and a
space between the colon and the first integer on the line. See the sample output format for a clear idea.
Sample Input
6 7
1 2
1 4
2 4
2 6
4 4
4 7
6 6
0 0
4 4
1 1
2 2
3 3
4 4
0 0
-1 -1
Sample Output
CASE#1: 5 4 2 4 11 13 28
CASE#2: 4 1 1 6 11 16

参考博客:http://blog.csdn.net/keshuai19940722/article/details/12163563

# include <stdio.h>
# include <string.h>
int n, m, k, map[101][101];
int dp[10001];//记录以i结尾的最长上升子序列长度
int pre[10001];//记录前驱节点
int cnt[10001];//保存以i结尾的最长上升子序列总数
int g[10001];//记录每个坐标的id
void init()
{
    int a, b;
    memset(map, 0, sizeof(map));
    while(scanf("%d%d",&a,&b),a+b)
        map[a][b] = 1;
    k = 0;
    for(int i=1; i<=n; ++i)
        for(int j=1; j<=m; ++j)
            if(map[i][j])
                g[k++] = (i-1)*m + j-1;//减1处理方便下面判断j点和i点的方位。
    if(!map[n][m])//将终点放进去,方便统计最长上升子序列和路径总数。
        g[k++] = n*m-1;
} void solve()
{
    for(int i=0; i<k; ++i)
    {
        dp[i]=1, cnt[i]=1, pre[i]=-1;
        for(int j=0; j<i; ++j)
            if((g[j]%m) <= (g[i]%m))
            {
                if(dp[j]+1 == dp[i])
                    cnt[i] += cnt[j];
                else if(dp[j]+1 > dp[i])
                    dp[i] = dp[j]+1, cnt[i] = cnt[j], pre[i] = j;
            }
    }
    if(!map[n][m])
        --dp[k-1];
} void put(int num)
{
    if(pre[num] != -1)
        put(pre[num]);
    if(num != k-1 || map[n][m])
        printf(" %d",g[num]+1);
} int main()
{
    int cas = 1;
    while(scanf("%d%d",&n,&m)==2)
    {
        if(n==-1 && m==-1)
            break;
        init();
        solve();
        printf("CASE#%d: %d %d",cas++, dp[k-1], cnt[k-1]);
        put(k-1);
        printf("\n");     }
    return 0;
}

转载于:https://www.cnblogs.com/junior19/p/6730084.html

UVA10599:Robots(II)(最长上升子序列)的更多相关文章

  1. [ACM] hdu 1025 Constructing Roads In JGShining's Kingdom (最长递增子序列,lower_bound使用)

    Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  2. P1439 【模板】最长公共子序列

    题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出格式: 一个数,即最长公共子 ...

  3. [HAOI2007]上升序列(最长上升子序列)

    题目描述 对于一个给定的 S=\{a_1,a_2,a_3,…,a_n\}S={a1​,a2​,a3​,…,an​} ,若有 P=\{a_{x_1},a_{x_2},a_{x_3},…,a_{x_m}\ ...

  4. HDOJ1025(最长上升子序列)

    Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  5. DP——最长上升子序列(LIS)

    DP——最长上升子序列(LIS) 基本定义: 一个序列中最长的单调递增的子序列,字符子序列指的是字符串中不一定连续但先后顺序一致的n个字符,即可以去掉字符串中的部分字符,但不可改变其前后顺序. LIS ...

  6. 【洛谷P4309】最长上升子序列

    题目大意:给定一个序列,初始为空.现在我们将 1 到 N 的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上升子序列长度是多少? 题解:学会了 rope 操 ...

  7. [LeetCode每日一题]1143. 最长公共子序列

    [LeetCode每日一题]1143. 最长公共子序列 问题 给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度.如果不存在 公共子序列 ,返回 0 . 一个字符串 ...

  8. 用python实现最长公共子序列算法(找到所有最长公共子串)

    软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对 ...

  9. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

随机推荐

  1. RedHat7.4配置yum网络源

    本次RedHat版本为:Red Hat Enterprise Linux Server release 7.4 (Maipo). 将RedHat7.4的yum源替换为免费的CentOS对应版本yum源 ...

  2. 构建LNMP

                                                                             构建LNMP 案例1:部署LNMP环境 案例2:构建L ...

  3. 这个案例写出来,还怕跟面试官扯不明白 OAuth2 登录流程?

    昨天和小伙伴们介绍了 OAuth2 的基本概念,在讲解 Spring Cloud Security OAuth2 之前,我还是先来通过实际代码来和小伙伴们把 OAuth2 中的各个授权模式走一遍,今天 ...

  4. go 内置函数

    一.什么是内置函数? 二.内置函数有哪些? 名称 说明 close 用于管道通信 len.cap len 用于返回某个类型的长度或数量(字符串.数组.切片.map 和管道):cap 是容量的意思,用于 ...

  5. Java第二十九天,文件及目录的管理,File类

    一.基础知识点 1.路径分隔符 (1)什么是路径分隔符? 这个多被应用在环境变量设置当中,例如当我设置Path环境变量时,多个环境变量的路径要用 ':'(Windows系统用封号分隔)或 ':'(Li ...

  6. tf.get_variable

    使用tf.get_variable()时,如果检测到命名冲突,系统不会处理冲突,而会报错. 如果已经创建的变量对象,就把那个对象返回,如果没有创建变量对象的话,就创建一个新的. tf.get_vari ...

  7. 一个hql 关键字member(非mysql)引起的 vo 数据 保存数据库错误

    2015-03-19 14:16:29,285 ERROR [Thread-3] (DAOHelper.java:312) - updateByEntityPK:com.agileeagle.dao. ...

  8. Java团队课程设计——基于学院的搜索引擎

    团队名称.团队成员介绍.任务分配,团队成员课程设计博客链接 姓名 成员介绍 任务分配 课程设计博客地址 谢晓淞(组长) 团队输出主力 爬虫功能实现,Web前端设计及其后端衔接 爬虫:https://w ...

  9. Win10安装Keras+Tensorflow+Opencv

    Win10安装keras 安装 Anaconda 清华加速下载链接: https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/ 我选择的版本是: A ...

  10. 练习,自定义TextView(1.1)

    重新自定义TextView是非常有趣的事情,跟着Android4高级编程,通过自定义TextView,来敲一下代码: 这个是那么的简单,自定义TextView,新建CustomTextView继承Te ...