数学--数论--随机算法--Pollard Rho 大数分解算法 (带输出版本)
RhoPollard Rho是一个著名的大数质因数分解算法,它的实现基于一个神奇的算法:MillerRabinMillerRabin素数测试。
操作流程
首先,我们先用MillerRabinMillerRabin判断当前数xx是否为质数,若是,则可直接统计信息并退出函数
然后是各种证明及优化,我觉得不大实用,这个板子是我改了很多遍了,也过了很多题的板子。用着很舒服,无论卡常,不卡常,速度相差不大,也可以加read.
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll pr;
ll pmod(ll a, ll b, ll p) { return (a * b - (ll)((long double)a / p * b) * p + p) % p; } //普通的快速乘会T
ll gmod(ll a, ll b, ll p)
{
ll res = 1;
while (b)
{
if (b & 1) res = pmod(res, a, p);
a = pmod(a, a, p);
b >>= 1;
}
return res;
}
inline ll gcd(ll a, ll b)
{ //听说二进制算法特快
if (!a) return b;
if (!b)return a;
int t = __builtin_ctzll(a | b);
a >>= __builtin_ctzll(a);
do
{
b >>= __builtin_ctzll(b);
if (a > b)
{
ll t = b;
b = a, a = t;
}
b -= a;
} while (b);
return a << t;
}
bool Miller_Rabin(ll n)
{
if (n == 46856248255981ll || n < 2)
return false; //强伪素数
if (n == 2 || n == 3 || n == 7 || n == 61 || n == 24251)
return true;
if (!(n & 1) || !(n % 3) || !(n % 61) || !(n % 24251))
return false;
ll m = n - 1, k = 0;
while (!(m & 1))
k++, m >>= 1;
for (int i = 1; i <= 20; ++i) // 20为Miller-Rabin测试的迭代次数
{
ll a = rand() % (n - 1) + 1, x = gmod(a, m, n), y;
for (int j = 1; j <= k; ++j)
{
y = pmod(x, x, n);
if (y == 1 && x != 1 && x != n - 1)
return 0;
x = y;
}
if (y != 1)
return 0;
}
return 1;
}
ll Pollard_Rho(ll x)
{
ll n = 0, m = 0, t = 1, q = 1, c = rand() % (x - 1) + 1;
for (ll k = 2;; k <<= 1, m = n, q = 1)
{
for (ll i = 1; i <= k; ++i)
{
n = (pmod(n, n, x) + c) % x;
q = pmod(q, abs(m - n), x);
}
t = gcd(x, q);
if (t > 1)
return t;
}
}
void fid(ll n)
{
if (n == 1)
return;
if (Miller_Rabin(n))
{
pr = max(pr, n);
return;
}
ll p = n;
while (p >= n)
p = Pollard_Rho(p);
fid(p);
fid(n / p);
}
int main()
{
int T;
ll n;
scanf("%d", &T);
while (T--)
{
scanf("%lld", &n);
pr = 0;
fid(n);
if (pr == n)
puts("Prime");
else
printf("%lld\n", pr);
}
return 0;
}
带输出的我也写了
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll pr;
ll pmod(ll a, ll b, ll p) { return (a * b - (ll)((long double)a / p * b) * p + p) % p; } //普通的快速乘会T
ll gmod(ll a, ll b, ll p)
{
ll res = 1;
while (b)
{
if (b & 1)
res = pmod(res, a, p);
a = pmod(a, a, p);
b >>= 1;
}
return res;
}
inline ll gcd(ll a, ll b)
{ //听说二进制算法特快
if (!a)
return b;
if (!b)
return a;
int t = __builtin_ctzll(a | b);
a >>= __builtin_ctzll(a);
do
{
b >>= __builtin_ctzll(b);
if (a > b)
{
ll t = b;
b = a, a = t;
}
b -= a;
} while (b);
return a << t;
}
bool Miller_Rabin(ll n)
{
if (n == 46856248255981ll || n < 2)
return false; //强伪素数
if (n == 2 || n == 3 || n == 7 || n == 61 || n == 24251)
return true;
if (!(n & 1) || !(n % 3) || !(n % 61) || !(n % 24251))
return false;
ll m = n - 1, k = 0;
while (!(m & 1))
k++, m >>= 1;
for (int i = 1; i <= 20; ++i) // 20为Miller-Rabin测试的迭代次数
{
ll a = rand() % (n - 1) + 1, x = gmod(a, m, n), y;
for (int j = 1; j <= k; ++j)
{
y = pmod(x, x, n);
if (y == 1 && x != 1 && x != n - 1)
return 0;
x = y;
}
if (y != 1)
return 0;
}
return 1;
}
ll Pollard_Rho(ll x)
{
ll n = 0, m = 0, t = 1, q = 1, c = rand() % (x - 1) + 1;
for (ll k = 2;; k <<= 1, m = n, q = 1)
{
for (ll i = 1; i <= k; ++i)
{
n = (pmod(n, n, x) + c) % x;
q = pmod(q, abs(m - n), x);
}
t = gcd(x, q);
if (t > 1)
return t;
}
}
map<long long, int> m;
void fid(ll n)
{
if (n == 1)
return;
if (Miller_Rabin(n))
{
pr = max(pr, n);
m[n]++;
return;
}
ll p = n;
while (p >= n)
p = Pollard_Rho(p);
fid(p);
fid(n / p);
}
int main()
{
int T;
ll n;
scanf("%d", &T);
while (T--)
{
m.clear();
scanf("%lld", &n);
pr = 0;
fid(n);
if (pr == n)
puts("Prime");
else
{
printf("%lld\n", pr);
for (map<long long, int>::iterator c = m.begin(); c != m.end();)
{
printf("%lld^%d", c->first, c->second);
if ((++c) != m.end())
printf(" * ");
}
printf("\n");
}
}
return 0;
}
数学--数论--随机算法--Pollard Rho 大数分解算法 (带输出版本)的更多相关文章
- 数学--数论--随机算法--Pollard Rho 大数分解算法(纯模板带输出)
ACM常用模板合集 #include <bits/stdc++.h> using namespace std; typedef long long ll; ll pr; ll pmod(l ...
- Pollard Rho因子分解算法
有一类问题,要求我们将一个正整数x,分解为两个非平凡因子(平凡因子为1与x)的乘积x=ab. 显然我们需要先检测x是否为素数(如果是素数将无解),可以使用Miller-Rabin算法来进行测试. Po ...
- 模板 - 数学 - 数论 - Miller-Rabin算法
使用Fermat小定理(Fermat's little theorem)的原理进行测试,不满足 \(2^{n-1}\;\mod\;n\;=\;1\) 的n一定不是质数:如果满足的话则多半是质数,满足上 ...
- 数学--数论---P4718 Pollard-Rho算法 大数分解
P4718 [模板]Pollard-Rho算法 题目描述 MillerRabin算法是一种高效的质数判断方法.虽然是一种不确定的质数判断法,但是在选择多种底数的情况下,正确率是可以接受的.Pollar ...
- 初学Pollard Rho算法
前言 \(Pollard\ Rho\)是一个著名的大数质因数分解算法,它的实现基于一个神奇的算法:\(MillerRabin\)素数测试(关于\(MillerRabin\),可以参考这篇博客:初学Mi ...
- Pollard Rho算法浅谈
Pollard Rho介绍 Pollard Rho算法是Pollard[1]在1975年[2]发明的一种将大整数因数分解的算法 其中Pollard来源于发明者Pollard的姓,Rho则来自内部伪随机 ...
- Miller Rabin素数检测与Pollard Rho算法
一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...
- BZOJ_3667_Rabin-Miller算法_Mille_Rabin+Pollard rho
BZOJ_3667_Rabin-Miller算法_Mille_Rabin+Pollard rho Description Input 第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一 ...
- Pollard Rho 算法简介
\(\text{update 2019.8.18}\) 由于本人将大部分精力花在了cnblogs上,而不是洛谷博客,评论区提出的一些问题直到今天才解决. 下面给出的Pollard Rho函数已给出散点 ...
随机推荐
- 从String 聊源码解读
@ 目录 源码实现 构造方法 equals 其他方法 常见面试题 你真的了解String吗?之前一篇博客写jvm时,就觉得String可以单独拎出来写一篇博客,毕竟几乎所有的面试都是以String开始 ...
- NS网络仿真,小白起步版,双节点之间的模拟仿真(基于TCP和FTP流)
set ns [new Simulator] set tracefd [open one.tr w] #开启跟踪文件,记录分组传送的过程 $ns trace-all $tracefd set namt ...
- Python——详解__str__, __repr__和__format__
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是Python专题的第10篇文章,我们来聊聊Python当中的类. 打印实例 我们先从类和对象当中最简单的打印输出开始讲起,打印一个实例 ...
- Nodejs开发微信公众号中控服务
本文已同步到专业技术网站 www.sufaith.com, 该网站专注于前后端开发技术与经验分享, 包含Web开发.Nodejs.Python.Linux.IT资讯等板块. 本项目旨在为多个微信公众号 ...
- CDR
伴随着新经济.独角兽一同被热议的,中国将很快推出存托凭证迎接独角兽回归.中国存托凭证(CDR)已成为当下热门话题.说不清CDR,还能和小伙伴们愉快地聊天吗? CDR到底是什么?它具有哪些优势?能否带来 ...
- web 应用 为啥 需要用到 tomcat 之类的 部署
首先了解C/s架构 比如我们常见的QQ,魔兽世界等 这种结构的程序是有服务器来提供服务的,客户端来使用服务 而B/S架构是这样的 它不需要安装客户端,只需要浏览器就可以了 例如QQ农场,这样对客户端的 ...
- 如何让一张图片变成二值图像?python+opencv图像处理
前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:张熹熹 PS:如有需要Python学习资料的小伙伴可以加点击下方链接自 ...
- 实验一 熟悉IDLE和在线编程平台
实验目的 1.掌握python IDLE集成开发环境的安装与使用 2.熟悉在线编程平台 3.掌握基本的python程序编写.编译与运行程序的方法 实验内容 1.按照实验指导安装IDLE,尝试交互式运行 ...
- 2020-3 网络对抗技术 20175120 exp5 信息搜集与漏洞扫描
目录 实践目标 实践内容 各种搜索技巧的应用 搜索特定类型的文件Google Hacking 搜索网站目录结构 DNS IP注册信息的查询 网络侦查 基本的扫描技术:主机发现.端口扫描.OS及服务版本 ...
- MySQL笔记总结-DDL语言
DDL语言 数据类型 一.数值型 1.整型 tinyint.smallint.mediumint.int/integer.bigint 1 2 3 4 8 特点: ①都可以设置无符号和有符号,默认有符 ...