Problem Description

Almost everyone likes kebabs nowadays (Here a kebab means pieces of meat grilled on a long thin stick). Have you, however, considered about the hardship of a kebab roaster while enjoying the delicious food? Well, here's a chance for you to help the poor roaster make sure whether he can deal with the following orders without dissatisfying the customers.

Now N customers is coming. Customer i will arrive at time si (which means the roaster cannot serve customer i until time si). He/She will order ni kebabs, each one of which requires a total amount of ti unit time to get it well-roasted, and want to get them before time ei(Just at exactly time ei is also OK). The roaster has a big grill which can hold an unlimited amount of kebabs (Unbelievable huh? Trust me, it’s real!). But he has so little charcoal that at most M kebabs can be roasted at the same time. He is skillful enough to take no time changing the kebabs being roasted. Can you help him determine if he can meet all the customers’ demand?

Oh, I forgot to say that the roaster needs not to roast a single kebab in a successive period of time. That means he can divide the whole ti unit time into k (1<=k<=ti) parts such that any two adjacent parts don’t have to be successive in time. He can also divide a single kebab into k (1<=k<=ti) parts and roast them simultaneously. The time needed to roast one part of the kebab well is linear to the amount of meat it contains. So if a kebab needs 10 unit time to roast well, he can divide it into 10 parts and roast them simultaneously just one unit time. Remember, however, a single unit time is indivisible and the kebab can only be divided into such parts that each needs an integral unit time to roast well.

 Input
There are multiple test cases. The first line of each case contains two positive integers N and M. N is the number of customers and M is the maximum kebabs the grill can roast at the same time. Then follow N lines each describing one customer, containing four integers: si (arrival time), ni (demand for kebabs), ei (deadline) and ti (time needed for roasting one kebab well).

There is a blank line after each input block.

Restriction:

1 <= N <= 200, 1 <= M <= 1,000

1 <= ni, ti <= 50

1 <= si < ei <= 1,000,000
 Output
If the roaster can satisfy all the customers, output “Yes” (without quotes). Otherwise, output “No”.
 Sample Input
2 10
1 10 6 3
2 10 4 2
2 10
1 10 5 3
2 10 4 2
 Sample Output
Yes
No
这个题就是基本的最大流,怎么建图,源点到每个人建边,流量设置为点羊肉串数量。然后每个人到他那个时间段的每一个边都设流量为INF,然后,时间点到汇点的边设置为M即,烤炉最多一次考多少串串。但是这里要考虑到点的范围1000000,这样建图真的会超时,我看了RQ的博客,看到了这里是可以离散化建图,就是说,将每个点看成一段时间的集合,如过时间有交叉就要把那段时间单独处理,这样它覆盖了多少点,就有多少个M然后最大流。 
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#include<vector>
#define INF 1e9
using namespace std;
const int maxn=600+5; struct Edge
{
int from,to,cap,flow;
Edge(){}
Edge(int f,int t,int c,int fl):from(f),to(t),cap(c),flow(fl){}
}; struct Dinic
{
int n,m,s,t;
vector<Edge> edges;
vector<int> G[maxn];
int d[maxn];
int cur[maxn];
bool vis[maxn]; void init(int n,int s,int t)
{
this->n=n, this->s=s, this->t=t;
edges.clear();
for(int i=0;i<n;++i) G[i].clear();
} void AddEdge(int from,int to,int cap)
{
edges.push_back(Edge(from,to,cap,0));
edges.push_back(Edge(to,from,0,0));
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
} bool BFS()
{
queue<int> Q;
memset(vis,0,sizeof(vis));
vis[s]=true;
d[s]=0;
Q.push(s);
while(!Q.empty())
{
int x=Q.front(); Q.pop();
for(int i=0;i<G[x].size();++i)
{
Edge &e=edges[G[x][i]];
if(!vis[e.to] && e.cap>e.flow)
{
vis[e.to]=true;
d[e.to]=d[x]+1;
Q.push(e.to);
}
}
}
return vis[t];
} int DFS(int x,int a)
{
if(x==t || a==0) return a;
int flow=0,f;
for(int& i=cur[x];i<G[x].size();++i)
{
Edge &e=edges[G[x][i]];
if(d[e.to]==d[x]+1 && (f=DFS(e.to,min(a,e.cap-e.flow) ) )>0)
{
e.flow +=f;
edges[G[x][i]^1].flow -=f;
flow +=f;
a -=f;
if(a==0) break;
}
}
return flow;
} int max_flow()
{
int ans=0;
while(BFS())
{
memset(cur,0,sizeof(cur));
ans += DFS(s,INF);
}
return ans;
}
}DC; int N,M;
int s[maxn],n[maxn],e[maxn],t[maxn];
int time[maxn];
int full_flow; int main()
{
while(scanf("%d%d",&N,&M)==2)
{
full_flow=0;
int cnt=0;
for(int i=1;i<=N;i++)
{
scanf("%d%d%d%d",&s[i],&n[i],&e[i],&t[i]);
time[cnt++]=s[i];
time[cnt++]=e[i];
full_flow += n[i]*t[i];
}
sort(time,time+cnt);
cnt = unique(time,time+cnt)-time;//去重
int src=0,dst=N+cnt+1;
DC.init(N+cnt+2,src,dst); for(int i=1;i<=N;i++) DC.AddEdge(src,i,n[i]*t[i]);
for(int i=1;i<=cnt-1;++i)
{
DC.AddEdge(N+i,dst,(time[i]-time[i-1])*M);
for(int j=1;j<=N;++j)
if(s[j]<=time[i-1] && time[i]<=e[j])
DC.AddEdge(j,N+i,INF);
}
printf("%s\n",DC.max_flow()==full_flow?"Yes":"No");
}
return 0;
}

图论--网络流--最大流 HDU 2883 kebab(离散化)的更多相关文章

  1. 图论--网络流--最大流 HDU 3572 Task Schedule(限流建图,超级源汇)

    Problem Description Our geometry princess XMM has stoped her study in computational geometry to conc ...

  2. HDU 2883 kebab(最大流)

    HDU 2883 kebab 题目链接 题意:有一个烧烤机,每次最多能烤 m 块肉.如今有 n 个人来买烤肉,每一个人到达时间为 si.离开时间为 ei,点的烤肉数量为 ci,每一个烤肉所需烘烤时间为 ...

  3. hdu 2883 kebab 网络流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2883 Almost everyone likes kebabs nowadays (Here a ke ...

  4. 图论--网络流--最小割 HDU 2485 Destroying the bus stations(最短路+限流建图)

    Problem Description Gabiluso is one of the greatest spies in his country. Now he's trying to complet ...

  5. HDU 2883 kebab

    kebab Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. Original ID: 2883 ...

  6. hdu 2883 kebab(时间区间压缩 &amp;&amp; dinic)

    kebab Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  7. 图论--网络流--最大流--POJ 3281 Dining (超级源汇+限流建图+拆点建图)

    Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, an ...

  8. 网络流 最大流HDU 3549

    //////////在这幅图中我们首先要增广1->2->4->6,这时可以获得一个容量为2的流,但是如果不建立4->2反向弧的话,则无法进一步增广,最终答案为2,显然是不对的, ...

  9. 网络流(最大流) HDU 1565 方格取数(1) HDU 1569 方格取数(2)

      HDU 1565 方格取数(1) 给你一个n*n的格子的棋盘,每个格子里面有一个非负数.从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数的 ...

随机推荐

  1. Android视频悬浮窗口实现

    前言 本文例子实现了点击显示悬浮窗口,同时窗口可播放视频,拖动位置,点击关闭及返回APP页面,通过例子来讲述悬浮窗口实现原理及细节处理,效果图如下所示: 原理 WindowManager对View视图 ...

  2. 06-jmeter参数化(函数对话框使用)

    概念: 1.变量命名的规则:字母.下划线开头,可包含数字,严格区分大小写 2.配置元件:用户定义的变量-------值是不变化的 用户命名的参数--------可以动态获取的并传参的 jmeter函数 ...

  3. Erlang语言之简述及安装

    1. 简述 Erlang在1991年由爱立信公司向用户推出了第一个版本,经过不断的改进完善和发展,在1996年爱立信又为所有的Erlang用户提供了一个非常实用且稳定的OTP软件库并在1998年发布了 ...

  4. git tag命令

    创建本地标签 git tag -a [tagname] -m [msg] git tag -a [tag_name] [commit_id] -m [msg] 创建远程标签 git push orig ...

  5. java 中类为啥要序列化

    java里为什么要序列化?http://zhidao.baidu.com/link?url=7_wAQ8eAl28vcJPE5OKM5Y0Bo4aINNQokHhRmI9XPszEoTO5QF-gNb ...

  6. iOS技能 - 最新美团、百度、腾讯、头条、阿里 面试题目记录

    关于面试题,可能没那么多时间来总结答案,有什么需要讨论的地方欢迎大家指教.主要记录一下准备过程,和面试的一些总结,希望能帮助到正在面试或者将要面试的同学吧. 美团 一面 1.简历上写的项目问了一遍,然 ...

  7. 详解 DatagramSocket类

    (请观看本人博文 -- <详解 网络编程>) DatagramSocket 概述: 这类代表一个发送和接收数据包的插座. 该类是遵循 UDP协议 实现的一个Socket类. 数据报套接字发 ...

  8. 详解 ServerSocket与Socket类

    (请观看本人博文 -- <详解 网络编程>) 目录 ServerSocket与Socket ServerSocket 类: Socket类: ServerSocket与Socket 首先, ...

  9. 9. 弹出键盘挡住input

    1.) react 中 <input className="inp3" placeholder="密码" type="password" ...

  10. PHP文件包含漏洞(利用phpinfo)复现

    0x01 简介 PHP文件包含漏洞中,如果找不到可以包含的文件,我们可以通过包含临时文件的方法来getshell.因为临时文件名是随机的,如果目标网站上存在phpinfo,则可以通过phpinfo来获 ...