Problem Description

Almost everyone likes kebabs nowadays (Here a kebab means pieces of meat grilled on a long thin stick). Have you, however, considered about the hardship of a kebab roaster while enjoying the delicious food? Well, here's a chance for you to help the poor roaster make sure whether he can deal with the following orders without dissatisfying the customers.

Now N customers is coming. Customer i will arrive at time si (which means the roaster cannot serve customer i until time si). He/She will order ni kebabs, each one of which requires a total amount of ti unit time to get it well-roasted, and want to get them before time ei(Just at exactly time ei is also OK). The roaster has a big grill which can hold an unlimited amount of kebabs (Unbelievable huh? Trust me, it’s real!). But he has so little charcoal that at most M kebabs can be roasted at the same time. He is skillful enough to take no time changing the kebabs being roasted. Can you help him determine if he can meet all the customers’ demand?

Oh, I forgot to say that the roaster needs not to roast a single kebab in a successive period of time. That means he can divide the whole ti unit time into k (1<=k<=ti) parts such that any two adjacent parts don’t have to be successive in time. He can also divide a single kebab into k (1<=k<=ti) parts and roast them simultaneously. The time needed to roast one part of the kebab well is linear to the amount of meat it contains. So if a kebab needs 10 unit time to roast well, he can divide it into 10 parts and roast them simultaneously just one unit time. Remember, however, a single unit time is indivisible and the kebab can only be divided into such parts that each needs an integral unit time to roast well.

 Input
There are multiple test cases. The first line of each case contains two positive integers N and M. N is the number of customers and M is the maximum kebabs the grill can roast at the same time. Then follow N lines each describing one customer, containing four integers: si (arrival time), ni (demand for kebabs), ei (deadline) and ti (time needed for roasting one kebab well).

There is a blank line after each input block.

Restriction:

1 <= N <= 200, 1 <= M <= 1,000

1 <= ni, ti <= 50

1 <= si < ei <= 1,000,000
 Output
If the roaster can satisfy all the customers, output “Yes” (without quotes). Otherwise, output “No”.
 Sample Input
2 10
1 10 6 3
2 10 4 2
2 10
1 10 5 3
2 10 4 2
 Sample Output
Yes
No
这个题就是基本的最大流,怎么建图,源点到每个人建边,流量设置为点羊肉串数量。然后每个人到他那个时间段的每一个边都设流量为INF,然后,时间点到汇点的边设置为M即,烤炉最多一次考多少串串。但是这里要考虑到点的范围1000000,这样建图真的会超时,我看了RQ的博客,看到了这里是可以离散化建图,就是说,将每个点看成一段时间的集合,如过时间有交叉就要把那段时间单独处理,这样它覆盖了多少点,就有多少个M然后最大流。 
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#include<vector>
#define INF 1e9
using namespace std;
const int maxn=600+5; struct Edge
{
int from,to,cap,flow;
Edge(){}
Edge(int f,int t,int c,int fl):from(f),to(t),cap(c),flow(fl){}
}; struct Dinic
{
int n,m,s,t;
vector<Edge> edges;
vector<int> G[maxn];
int d[maxn];
int cur[maxn];
bool vis[maxn]; void init(int n,int s,int t)
{
this->n=n, this->s=s, this->t=t;
edges.clear();
for(int i=0;i<n;++i) G[i].clear();
} void AddEdge(int from,int to,int cap)
{
edges.push_back(Edge(from,to,cap,0));
edges.push_back(Edge(to,from,0,0));
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
} bool BFS()
{
queue<int> Q;
memset(vis,0,sizeof(vis));
vis[s]=true;
d[s]=0;
Q.push(s);
while(!Q.empty())
{
int x=Q.front(); Q.pop();
for(int i=0;i<G[x].size();++i)
{
Edge &e=edges[G[x][i]];
if(!vis[e.to] && e.cap>e.flow)
{
vis[e.to]=true;
d[e.to]=d[x]+1;
Q.push(e.to);
}
}
}
return vis[t];
} int DFS(int x,int a)
{
if(x==t || a==0) return a;
int flow=0,f;
for(int& i=cur[x];i<G[x].size();++i)
{
Edge &e=edges[G[x][i]];
if(d[e.to]==d[x]+1 && (f=DFS(e.to,min(a,e.cap-e.flow) ) )>0)
{
e.flow +=f;
edges[G[x][i]^1].flow -=f;
flow +=f;
a -=f;
if(a==0) break;
}
}
return flow;
} int max_flow()
{
int ans=0;
while(BFS())
{
memset(cur,0,sizeof(cur));
ans += DFS(s,INF);
}
return ans;
}
}DC; int N,M;
int s[maxn],n[maxn],e[maxn],t[maxn];
int time[maxn];
int full_flow; int main()
{
while(scanf("%d%d",&N,&M)==2)
{
full_flow=0;
int cnt=0;
for(int i=1;i<=N;i++)
{
scanf("%d%d%d%d",&s[i],&n[i],&e[i],&t[i]);
time[cnt++]=s[i];
time[cnt++]=e[i];
full_flow += n[i]*t[i];
}
sort(time,time+cnt);
cnt = unique(time,time+cnt)-time;//去重
int src=0,dst=N+cnt+1;
DC.init(N+cnt+2,src,dst); for(int i=1;i<=N;i++) DC.AddEdge(src,i,n[i]*t[i]);
for(int i=1;i<=cnt-1;++i)
{
DC.AddEdge(N+i,dst,(time[i]-time[i-1])*M);
for(int j=1;j<=N;++j)
if(s[j]<=time[i-1] && time[i]<=e[j])
DC.AddEdge(j,N+i,INF);
}
printf("%s\n",DC.max_flow()==full_flow?"Yes":"No");
}
return 0;
}

图论--网络流--最大流 HDU 2883 kebab(离散化)的更多相关文章

  1. 图论--网络流--最大流 HDU 3572 Task Schedule(限流建图,超级源汇)

    Problem Description Our geometry princess XMM has stoped her study in computational geometry to conc ...

  2. HDU 2883 kebab(最大流)

    HDU 2883 kebab 题目链接 题意:有一个烧烤机,每次最多能烤 m 块肉.如今有 n 个人来买烤肉,每一个人到达时间为 si.离开时间为 ei,点的烤肉数量为 ci,每一个烤肉所需烘烤时间为 ...

  3. hdu 2883 kebab 网络流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2883 Almost everyone likes kebabs nowadays (Here a ke ...

  4. 图论--网络流--最小割 HDU 2485 Destroying the bus stations(最短路+限流建图)

    Problem Description Gabiluso is one of the greatest spies in his country. Now he's trying to complet ...

  5. HDU 2883 kebab

    kebab Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. Original ID: 2883 ...

  6. hdu 2883 kebab(时间区间压缩 &amp;&amp; dinic)

    kebab Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  7. 图论--网络流--最大流--POJ 3281 Dining (超级源汇+限流建图+拆点建图)

    Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, an ...

  8. 网络流 最大流HDU 3549

    //////////在这幅图中我们首先要增广1->2->4->6,这时可以获得一个容量为2的流,但是如果不建立4->2反向弧的话,则无法进一步增广,最终答案为2,显然是不对的, ...

  9. 网络流(最大流) HDU 1565 方格取数(1) HDU 1569 方格取数(2)

      HDU 1565 方格取数(1) 给你一个n*n的格子的棋盘,每个格子里面有一个非负数.从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数的 ...

随机推荐

  1. Unity Shader and Effects Cookbook问题记录

    1.p61的specular计算,涉及到的一个参数“_SpecColor”是在Unity的官方cginc文件(UnityLightingCommon.cginc)中,是直接赋颜色给这个参数,反应到你模 ...

  2. python 函数简介

    一.为什么要有函数? 不加区分地将所有功能的代码垒到一起,问题是: 代码的可读性差. 代码冗余 代码可扩展性差 如何解决? 函数即工具,事先准备工具的过程是定义函数,拿来就用指的是函数调用. 什么是函 ...

  3. JAVA中的==和queals()的区别

    一.先来说说Java的基本数据类型和引用类型 八大基本数据类型:Byte,short,int,long,double,folat,boolean,char,其中占一个字节的是byte,short和ch ...

  4. python3(三)enc

    # ASCII编码和Unicode编码的区别:ASCII编码是1个字节,而Unicode编码通常是2个字节. # Unicode把所有语言都统一到一套编码里,这样就不会再有乱码问题了. # 新的问题又 ...

  5. coding++:jdk1.7 HashMap 的get()和put() 源码

    HashMap的概述:    基于哈希表的 Map 接口的实现.    此实现提供所有可选的映射操作,并允许使用 null 值和 null 键. (除了非同步和允许使用 null 之外,HashMap ...

  6. Netty是如何处理新连接接入事件的?

    更多技术分享可关注我 前言 前面的分析从Netty服务端启动过程入手,一路走到了Netty的心脏——NioEventLoop,又总结了Netty的异步API和设计原理,现在回到Netty服务端本身,看 ...

  7. 数据结构和算法(Golang实现)(7)简单入门Golang-标准库

    使用标准库 一.避免重复造轮子 官方提供了很多库给我们用,是封装好的轮子,比如包fmt,我们多次使用它来打印数据. 我们可以查看到其里面的实现: package fmt func Println(a ...

  8. DLL/OCX文件的注册与数据执行保护DEP

    注册/反注册dll或ocx文件时,无论是用regsvr32还是DllRegisterServer/DllUnregisterServer,可能会遇到[内存位置访问无效]的问题: 此时把操作系统的数据执 ...

  9. B - Red and Black 直接BFS+队列

    There is a rectangular room, covered with square tiles. Each tile is colored either red or black. A ...

  10. python基础-json、pickle模块

    json.pickle区别 总结: """ json: 1.不是所有的数据类型否可以序列化,序列化返回结果为字符串 2.不能多次对同一文件序列化 3.json数据可以跨语 ...