如果要把训练好的模型拿来测试新的图片,那必须得要一个deploy.prototxt文件,这个文件实际上和test.prototxt文件差不多,只是头尾不相同而也。deploy文件没有第一层数据输入层,也没有最后的Accuracy层,但最后多了一个Softmax概率层。

这里我们采用代码的方式来自动生成该文件,以mnist为例。

deploy.py

# -*- coding: utf-8 -*-

from caffe import layers as L,params as P,to_proto
root='/home/xxx/'
deploy=root+'mnist/deploy.prototxt' #文件保存路径 def create_deploy():
#少了第一层,data层
conv1=L.Convolution(bottom='data', kernel_size=5, stride=1,num_output=20, pad=0,weight_filler=dict(type='xavier'))
pool1=L.Pooling(conv1, pool=P.Pooling.MAX, kernel_size=2, stride=2)
conv2=L.Convolution(pool1, kernel_size=5, stride=1,num_output=50, pad=0,weight_filler=dict(type='xavier'))
pool2=L.Pooling(conv2, pool=P.Pooling.MAX, kernel_size=2, stride=2)
fc3=L.InnerProduct(pool2, num_output=500,weight_filler=dict(type='xavier'))
relu3=L.ReLU(fc3, in_place=True)
fc4 = L.InnerProduct(relu3, num_output=10,weight_filler=dict(type='xavier'))
#最后没有accuracy层,但有一个Softmax层
prob=L.Softmax(fc4)
return to_proto(prob)
def write_deploy():
with open(deploy, 'w') as f:
f.write('name:"Lenet"\n')
f.write('input:"data"\n')
f.write('input_dim:1\n')
f.write('input_dim:3\n')
f.write('input_dim:28\n')
f.write('input_dim:28\n')
f.write(str(create_deploy()))
if __name__ == '__main__':
write_deploy()

运行该文件后,会在mnist目录下,生成一个deploy.prototxt文件。

这个文件不推荐用代码来生成,反而麻烦。大家熟悉以后可以将test.prototxt复制一份,修改相应的地方就可以了,更加方便。

caffe的python接口学习(5)生成deploy文件的更多相关文章

  1. caffe的python接口学习(1):生成配置文件

    caffe是C++语言写的,可能很多人不太熟悉,因此想用更简单的脚本语言来实现.caffe提供matlab接口和python接口,这两种语言就非常简单,而且非常容易进行可视化,使得学习更加快速,理解更 ...

  2. caffe的python接口学习(5):生成deploy文件

    如果要把训练好的模型拿来测试新的图片,那必须得要一个deploy.prototxt文件,这个文件实际上和test.prototxt文件差不多,只是头尾不相同而也.deploy文件没有第一层数据输入层, ...

  3. caffe的python接口学习(2):生成solver文件

    caffe在训练的时候,需要一些参数设置,我们一般将这些参数设置在一个叫solver.prototxt的文件里面,如下: base_lr: 0.001 display: 782 gamma: 0.1 ...

  4. caffe的python接口学习(2)生成solver文件

    caffe在训练的时候,需要一些参数设置,我们一般将这些参数设置在一个叫solver.prototxt的文件里面 有一些参数需要计算的,也不是乱设置. 假设我们有50000个训练样本,batch_si ...

  5. caffe的python接口学习(6)用训练好的模型caffemodel分类新图片

    经过前面两篇博文的学习,我们已经训练好了一个caffemodel模型,并生成了一个deploy.prototxt文件,现在我们就利用这两个文件来对一个新的图片进行分类预测. 我们从mnist数据集的t ...

  6. caffe的python接口学习(7):绘制loss和accuracy曲线

    使用python接口来运行caffe程序,主要的原因是python非常容易可视化.所以不推荐大家在命令行下面运行python程序.如果非要在命令行下面运行,还不如直接用 c++算了. 推荐使用jupy ...

  7. caffe的python接口学习(6):用训练好的模型(caffemodel)来分类新的图片

    经过前面两篇博文的学习,我们已经训练好了一个caffemodel模型,并生成了一个deploy.prototxt文件,现在我们就利用这两个文件来对一个新的图片进行分类预测. 我们从mnist数据集的t ...

  8. caffe的python接口学习(4):mnist实例---手写数字识别

    深度学习的第一个实例一般都是mnist,只要这个例子完全弄懂了,其它的就是举一反三的事了.由于篇幅原因,本文不具体介绍配置文件里面每个参数的具体函义,如果想弄明白的,请参看我以前的博文: 数据层及参数 ...

  9. caffe的python接口学习(4)mnist实例手写数字识别

    以下主要是摘抄denny博文的内容,更多内容大家去看原作者吧 一 数据准备 准备训练集和测试集图片的列表清单; 二 导入caffe库,设定文件路径 # -*- coding: utf-8 -*- im ...

随机推荐

  1. 从0开始探究vue-组件化-组件之间传值

    理解 Vue中有个非常重要的核心思想,就是组件化,组件化是为了代码复用 什么是组件化 组件化,就像一个电脑主机里的主板,有内存条的插口,有硬盘,光驱等等的插口,我们的项目,就像一个电脑主机,通过各种组 ...

  2. 本地计算机上的MySQL80服务启动后停止,某些服务在未由其他服务或者程序使用时将自动停止

    是由于mysql server XX 路径下的my.ini文件发生错误. 高版本的mysql server的my.ini文件不在mysql server XX路径下,在programdata文件夹(查 ...

  3. Java实现 LeetCode 404 左叶子之和

    404. 左叶子之和 计算给定二叉树的所有左叶子之和. 示例: 3 / \ 9 20 / \ 15 7 在这个二叉树中,有两个左叶子,分别是 9 和 15,所以返回 24 /** * Definiti ...

  4. Java实现蓝桥杯算法提高12-2扑克排序

    扑克牌排序 问题描述 扑克牌排序:构造扑克牌数组,对扑克牌进行排序. 排序原则如下:数字从小到大是2-10.J.Q.K和A,花色从小到大是方块(diamond).梅花(club).红桃(heart). ...

  5. Java实现 LeetCode 148 排序链表

    148. 排序链表 在 O(n log n) 时间复杂度和常数级空间复杂度下,对链表进行排序. 示例 1: 输入: 4->2->1->3 输出: 1->2->3-> ...

  6. Java实现 蓝桥杯 历届真题 稍大的串

    串可以按照字典序进行比较.例如: abcd 小于 abdc 如果给定一个串,打乱组成它的字母,重新排列,可以得到许多不同的串,在这些不同的串中,有一个串刚好给定的串稍微大一些.科学地说:它是大于已知串 ...

  7. java实现 洛谷 P1018 乘积最大

    import java.math.BigInteger; import java.util.Scanner; public class Main { private static Scanner ci ...

  8. TCP/IP三次握手协议

    一.简介         三次握手协议指的是在发送数据的准备阶段,服务器端和客户端之间需要进行三次交互,OSI参考模型中的网络层,在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一 ...

  9. 使用Aspose.word (Java) 填充word文档数据(包含图片填充)

    Aspose填充word数据 本文介绍了如何使用aspose进行word文档的生成,并提供了工具类供参考. 有问题欢迎 call 微信:905369866,小弟尽力而为..毕竟这玩意没吃透. 目录 A ...

  10. iOS-自定义 UITabBarController

    先来回顾一下UITabBarController ( 稍微详细的在在http://blog.csdn.net/yang198907/article/details/49807011) 伴随UITabB ...