如果要把训练好的模型拿来测试新的图片,那必须得要一个deploy.prototxt文件,这个文件实际上和test.prototxt文件差不多,只是头尾不相同而也。deploy文件没有第一层数据输入层,也没有最后的Accuracy层,但最后多了一个Softmax概率层。

这里我们采用代码的方式来自动生成该文件,以mnist为例。

deploy.py

# -*- coding: utf-8 -*-

from caffe import layers as L,params as P,to_proto
root='/home/xxx/'
deploy=root+'mnist/deploy.prototxt' #文件保存路径 def create_deploy():
#少了第一层,data层
conv1=L.Convolution(bottom='data', kernel_size=5, stride=1,num_output=20, pad=0,weight_filler=dict(type='xavier'))
pool1=L.Pooling(conv1, pool=P.Pooling.MAX, kernel_size=2, stride=2)
conv2=L.Convolution(pool1, kernel_size=5, stride=1,num_output=50, pad=0,weight_filler=dict(type='xavier'))
pool2=L.Pooling(conv2, pool=P.Pooling.MAX, kernel_size=2, stride=2)
fc3=L.InnerProduct(pool2, num_output=500,weight_filler=dict(type='xavier'))
relu3=L.ReLU(fc3, in_place=True)
fc4 = L.InnerProduct(relu3, num_output=10,weight_filler=dict(type='xavier'))
#最后没有accuracy层,但有一个Softmax层
prob=L.Softmax(fc4)
return to_proto(prob)
def write_deploy():
with open(deploy, 'w') as f:
f.write('name:"Lenet"\n')
f.write('input:"data"\n')
f.write('input_dim:1\n')
f.write('input_dim:3\n')
f.write('input_dim:28\n')
f.write('input_dim:28\n')
f.write(str(create_deploy()))
if __name__ == '__main__':
write_deploy()

运行该文件后,会在mnist目录下,生成一个deploy.prototxt文件。

这个文件不推荐用代码来生成,反而麻烦。大家熟悉以后可以将test.prototxt复制一份,修改相应的地方就可以了,更加方便。

caffe的python接口学习(5)生成deploy文件的更多相关文章

  1. caffe的python接口学习(1):生成配置文件

    caffe是C++语言写的,可能很多人不太熟悉,因此想用更简单的脚本语言来实现.caffe提供matlab接口和python接口,这两种语言就非常简单,而且非常容易进行可视化,使得学习更加快速,理解更 ...

  2. caffe的python接口学习(5):生成deploy文件

    如果要把训练好的模型拿来测试新的图片,那必须得要一个deploy.prototxt文件,这个文件实际上和test.prototxt文件差不多,只是头尾不相同而也.deploy文件没有第一层数据输入层, ...

  3. caffe的python接口学习(2):生成solver文件

    caffe在训练的时候,需要一些参数设置,我们一般将这些参数设置在一个叫solver.prototxt的文件里面,如下: base_lr: 0.001 display: 782 gamma: 0.1 ...

  4. caffe的python接口学习(2)生成solver文件

    caffe在训练的时候,需要一些参数设置,我们一般将这些参数设置在一个叫solver.prototxt的文件里面 有一些参数需要计算的,也不是乱设置. 假设我们有50000个训练样本,batch_si ...

  5. caffe的python接口学习(6)用训练好的模型caffemodel分类新图片

    经过前面两篇博文的学习,我们已经训练好了一个caffemodel模型,并生成了一个deploy.prototxt文件,现在我们就利用这两个文件来对一个新的图片进行分类预测. 我们从mnist数据集的t ...

  6. caffe的python接口学习(7):绘制loss和accuracy曲线

    使用python接口来运行caffe程序,主要的原因是python非常容易可视化.所以不推荐大家在命令行下面运行python程序.如果非要在命令行下面运行,还不如直接用 c++算了. 推荐使用jupy ...

  7. caffe的python接口学习(6):用训练好的模型(caffemodel)来分类新的图片

    经过前面两篇博文的学习,我们已经训练好了一个caffemodel模型,并生成了一个deploy.prototxt文件,现在我们就利用这两个文件来对一个新的图片进行分类预测. 我们从mnist数据集的t ...

  8. caffe的python接口学习(4):mnist实例---手写数字识别

    深度学习的第一个实例一般都是mnist,只要这个例子完全弄懂了,其它的就是举一反三的事了.由于篇幅原因,本文不具体介绍配置文件里面每个参数的具体函义,如果想弄明白的,请参看我以前的博文: 数据层及参数 ...

  9. caffe的python接口学习(4)mnist实例手写数字识别

    以下主要是摘抄denny博文的内容,更多内容大家去看原作者吧 一 数据准备 准备训练集和测试集图片的列表清单; 二 导入caffe库,设定文件路径 # -*- coding: utf-8 -*- im ...

随机推荐

  1. jchdl - RTL实例 - AndReg

    https://mp.weixin.qq.com/s/p4-379tBRYKCYBk8AZoT8A   输入两组线相与,结果输出到寄存器.   参考链接 https://github.com/wjcd ...

  2. Redis 单节点百万级别数据 读取 性能测试.

    个人博客网:https://wushaopei.github.io/    (你想要这里多有) 这里先进行造数据,向redis中写入五百万条数据,具体方式有如下三种: 方法一:(Lua 脚本) vim ...

  3. Spring Boot笔记(一) springboot 集成 swagger-ui

    个人博客网:https://wushaopei.github.io/    (你想要这里多有) 1.添加依赖 <!--SpringBoot整合Swagger-ui--> <depen ...

  4. 分享两个常用的rem布局方式

    关于rem 这种技术需要一个参考点,一般都是以<body>的“font-size”为基准. 比如我们设置body,html的字体大小为10px:那么1rem就是10px, 这样一来,我们设 ...

  5. Java实现 蓝桥杯 算法提高 计算超阶乘(暴力)

    试题 算法提高 计算超阶乘 问题描述 计算1*(1+k)(1+2k)(1+3k)-(1+n*k-k)的末尾有多少个0,最后一位非0位是多少. 输入格式 输入的第一行包含两个整数n, k. 输出格式 输 ...

  6. Java中多态举例说明

    这里我也就大概说一下他们的关系, 接口就是动物,然而每一个类就是一种动物 给猫有两个功能:叫和睡觉 狗:叫 在f方法里面可以把猫的功能实现 但不能实现狗的功能 在主方法里面有一个猫有一个狗 分别调用 ...

  7. SQL Server账号密码(sa)登录失败 错误原因:18456

    (其实以前经常用的时候,都很简单,最近一段时间不用了,再一看发现都忘记的差不多了,还是写一篇博客吧,防止下一次再在这种问题上面浪费时间) 使用window登录 打开属性 打开安全性 选择SQL ser ...

  8. Java GUI 鼠标事件

    import java.awt.Button; import java.awt.FlowLayout; import java.awt.Frame; import java.awt.event.Mou ...

  9. Java实现 洛谷 P1423 小玉在游泳

    import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner in = ...

  10. java实现第六届蓝桥杯牌型整数

    牌型整数 题目描述 小明被劫持到X赌城,被迫与其他3人玩牌. 一副扑克牌(去掉大小王牌,共52张),均匀发给4个人,每个人13张. 这时,小明脑子里突然冒出一个问题: 如果不考虑花色,只考虑点数,也不 ...