题意:给n*m的网格涂黑白两种颜色,保证每个格子上下左右的四个格子中最多只有一个格子与自己颜色相同,问有多少种涂法?结果$mod1000000007$

思路:先只考虑一行有多少种涂法

  • $dp[i][0]$表示第$i$个格子与第$i-1$个格子颜色不一样,那么第$i-1$与第$i-2$个格子颜色可以不同也可以相同,所以$dp[i][0]=dp[i-1][1]+dp[i-1][0]$
  • $dp[i][1]$表示第$i$个格子与第$i-1$个格子颜色相同,那么第$i-1$与第$i-2$格子颜色只能不相同,所以$dp[i][1]=dp[i-1][0]$

再考虑其他行的情况:

  • 第一行有两个连续格子颜色相同时的情况(即 黑黑白黑白...这种情况),这时第二行必须跟第一行完全相反才能符合题意。

证明如下:以 黑黑白黑白 为例,如果 黑黑 的下一行出现了 黑,显然不符合题意,所以 黑黑 的下一行只能为 白白,其次如果第三个 白 的下一行为 白,就和前面的两个 白 组成了连续的三个 白,不符合题意,所以此时下一行必须与上一行完全相反。

  • 第一行没有两个连续格子颜色相同时的情况(即 黑白黑白黑白...这种情况),设$f(i)$表示加入第$i$行时有多少种情况,如果第$i-1$和第$i-2$行颜色相同,那么第$i$行与第$i-1$行颜色不能相同,如果第$i-1$和第$i-2$行颜色不同,那么第$i$行和第$i-1$行颜色可以相同也可以不同,先假设第$i$行与第$i-1$行颜色不同,那么有$f(i-1)$种,只有当第$i-1$行与第$i-2$行颜色不同时第$i$行与第$i-1$行颜色才能相同,有$f(i-2)$种,所以$f(i)=f(i-1)+f(i-2)$,满足斐波那契数列。

第一种情况有$dp[m][0]+dp[m][1]-2$种(除去 黑白黑白黑白... 白黑白黑白黑... 这两种情况),第二种情况只有两种,所以最后的方案数为$dp[m][0]+dp[m][1]-2+2*f(n)$

其实行和列都是斐波那契数列,比赛时没看出来,答案为$2*(f(n)+f(m))-2$

#include <iostream>
#include <cstdio>
#include <algorithm> using namespace std; typedef long long ll; const int N = ;
const ll mod = int(1e9) + ; ll dp[N][], n, m;
ll f[N]; int main()
{
scanf("%lld%lld", &n, &m);
dp[][] = , dp[][] = ;
for (int i = ; i <= m; i++) {
dp[i][] = (dp[i - ][] + dp[i - ][]) % mod;
dp[i][] = dp[i - ][] % mod;
}
f[] = , f[] = ;
for (int i = ; i <= n; i++) f[i] = (f[i - ] + f[i - ]) % mod;
ll res = (dp[m][] + dp[m][]) % mod;
ll ans = ((f[n] * ) % mod + (res - ) % mod) % mod;
printf("%lld\n", ans);
return ;
}

Codeforces Round #594 (Div. 2) - C. Ivan the Fool and the Probability Theory(思维)的更多相关文章

  1. Codeforces Round #594 (Div. 2) C. Ivan the Fool and the Probability Theory (思维,递推)

    题意:给你一个\(n\)x\(m\)的矩阵,需要在这些矩阵中涂色,每个格子可以涂成黑色或者白色,一个格子四周最多只能有\(2\)个和它颜色相同的,问最多有多少种涂色方案. 题解:首先我们考虑一维的情况 ...

  2. Codeforces Round #594 (Div. 1) A. Ivan the Fool and the Probability Theory 动态规划

    A. Ivan the Fool and the Probability Theory Recently Ivan the Fool decided to become smarter and stu ...

  3. Codeforces Round #594 (Div. 2)

    传送门 C. Ivan the Fool and the Probability Theory 题意: 给出一个\(n*m\)的方格,现在要给方格中的元素黑白染色,要求任一颜色最多有一个颜色相同的格子 ...

  4. Codeforces Round #594 (Div. 1)

    Preface 这场CF真是细节多的爆炸,B,C,F都是大细节题,每道题都写了好久的说 CSP前的打的最后一场比赛了吧,瞬间凉意满满 希望CSP可以狗住冬令营啊(再狗不住真没了) A. Ivan th ...

  5. Codeforces Round #539 (Div. 2) - C. Sasha and a Bit of Relax(思维题)

    Problem   Codeforces Round #539 (Div. 2) - C. Sasha and a Bit of Relax Time Limit: 2000 mSec Problem ...

  6. Codeforces Round #716 (Div. 2), problem: (B) AND 0, Sum Big位运算思维

    & -- 位运算之一,有0则0 原题链接 Problem - 1514B - Codeforces 题目 Example input 2 2 2 100000 20 output 4 2267 ...

  7. Codeforces Round #594 (Div. 1) Ivan the Fool and the Probability Theory

    题意:给你一个NxM的图,让你求有多少符合 “一个格子最多只有一个同颜色邻居”的图? 题解:首先我们可以分析一维,很容易就可以知道这是一个斐波那契计数 因为dp[1][m]可以是dp[1][m-1]添 ...

  8. Codeforces Round #594 (Div. 1) D. Catowice City 图论

    D. Catowice City In the Catowice city next weekend the cat contest will be held. However, the jury m ...

  9. Codeforces Round #594 (Div. 1) C. Queue in the Train 模拟

    C. Queue in the Train There are

随机推荐

  1. javaScript中的querySelector和querySelectorAll

    querySelector和querySelectorAll是W3C提供的 新的查询接口,其主要特点如下: 1.querySelector只返回匹配的第一个元素,如果没有匹配项,返回null. 2.q ...

  2. pwnable.kr-balckjack-Writeup

    MarkdownPad Document *:first-child { margin-top: 0 !important; } body>*:last-child { margin-botto ...

  3. Tomcat,Jboss,Weblogic通过jndi连接数据库

    1.  Tomcat配置Jndi数据源 1.1在tomcat服务器的lib目录下加入数据库连接的驱动jar包 1.2修改tomcat服务器的conf目录下server.xml配置文件 编辑server ...

  4. tensorflow按需分配GPU问题

    使用tensorflow,如果不加设置,即使是很小的模型也会占用整块GPU,造成资源浪费. 所以我们需要设置,使程序按需使用GPU. 具体设置方法: gpu_options = tf.GPUOptio ...

  5. Java编译器的常量优化

    /* 在给变量进行赋值的时候,如果右侧的表达式当中全都是常量,没有任何变量, 那么编译器javac将会直接将若干个常量表达式计算得到结果. short result = 5 + 8; // 等号右边全 ...

  6. 【MySQL】常用增删改查

    目录 1. 文件夹(库) 2. 文件(表) 3. 文件内容(数据) "@ ___ 1. 文件夹(库) # 增 create database db charset utf8; # 查 sho ...

  7. python:字符串类型

    字符串概念 字符串:由单个字符组成的一个序列, 字符串是一个不可变的类型 形式: 非原始字符串: 单引号:单引号包起来的一段字符就是字符串 双引号:和单引号一样 三引号:三引号包括的字符串可以换行,保 ...

  8. win10配置cuda和pytorch

    简介 pytorch是非常流行的深度学习框架.下面是Windows平台配置pytorch的过程. 一共需要安装cuda.pycharm.anancoda.pytorch. 主要介绍cuda和pytor ...

  9. Bugku-CTF社工篇之社工进阶

     

  10. spring boot中配置文件中变量的引用

    配置文件中 变量的自身引用 ${名称} java文件中引用:非静态变量 之间在变量上面注释@Value("${名称}")  静态变量 在set方法上注释@Value("$ ...