matplotlib是python中的一个画图库,继承了matlib(从名字上也看得出来)的优点和语法,所以对于熟悉matlib的用户来说是十分友好的。

pylab和pyplot

关于pylab和pyplot,人们做过不少的讨论。这两个模块有哪些不同呢?pylab模块跟matplotlib一起安装,而pyplot则是matplotlib的内部模块。两者的导入方法有所不同,可选择其中一种进行导入。

from pylab import *
#或
import matplotlib.pyplot as plt
import numpy as np

pylab在同一命名空间整合了pyplot和Numpy的功能,因此无需再单独导入Numpy。更进一步来说,导入pylab后,pyplot和Numpy的函数就可以直接调用,而不用再指定其所属模块(命名空间),从而使得matplotlib开发环境更像是Matlab。

plot(x,y)
array([1,2,3,4])
#而不用指定模块名称
plt.plot()
np.array([1,2,3,4])

大多情况下,我们更乐意使用pyplot模块。

线状图

这里我使用jupyter来进行演示

ipython qtconsole --matplotlib inline

用matplotlib生成这个图表很简单,一行代码就能搞定

plt.plot([1,2,3,4])
plt.show()

如图所示,生成了一个Line2D对象。该对象为一条直线,它表示图表中各数据点的线性延伸趋势。我们可以看出,列表中的数据直接被作为y轴的值展示了出来,x周是从0开始的,所以我们要看一个数据的折线图,只用输入一个list即可。

但我们可以看出这个图可能还很简陋,比如有如下几个问题:

  • y轴显示为啥是0.5为步长间隔,我想以1为步长间隔
  • 我想控制x轴展示的值,而不是从0开始
  • 图太小了,能否控制大小
  • x轴和y轴字太小了,能否控制大小
  • 给x轴和y轴命个名吧
  • 没有网格看不清
  • 没有图例
  • 给线状图标上点
  • 我想保存图片到本地
  • 怎么画子图呢

接下来我们就一个一个解决。

1.设置x轴和y轴步长间隔

控制x轴,y轴显示的值,有两个参数

  • xticks(ticks, [labels], **kwargs)

  • yticks(ticks, [labels], **kwargs)

    • ticks:控制显示的位置,也就是显示那几个值,这几个值必须在y值数据的范围内,这里也就是[1,4]这个范围。
    • [labels]:控制显示在对应位置的值,可以是数也可以是字符。
y = [1,2,3,4]
step = 1
plt.yticks([i for i in y if i%step == 0])
plt.plot(y)

2.x轴展示的值

这里展示了坐标轴显示字符的情况。

注意第五行,我改成了[1,2,3,3.5,4],所以显示出来就多了个3.5。

y = [1,2,3,4]
scale_ls = range(4)
index_ls = ["富强","民主","文明","和谐"]
plt.xticks(scale_ls,index_ls)
plt.yticks([1,2,3,3.5,4])
plt.plot(y)

3.控制图表大小

控制图表的大小要用到的几个方法

  • rcParams:这个参数是用来设置一些配置参数的,比如这里我就用到了大小和dpi

    • figure.figsize:控制大小,参数为一个二元组(x,y),即长、宽
    • figure.dpi:控制dpi
plt.rcParams['figure.figsize'] = (10,5)
plt.rcParams['figure.dpi'] = 200
y = [1,2,3,4]
scale_ls = range(4)
index_ls = ["富强","民主","文明","和谐"]
plt.xticks(scale_ls,index_ls)
plt.yticks([1,2,3,3.5,4])
plt.plot(y)

这里可以看出更大更清晰了

4.调节x轴和y轴字体大小

这里控制字体大小用到的也是xticksyticks,只不过使用到了fontsize参数。

plt.rcParams['figure.figsize'] = (10,5)
plt.rcParams['figure.dpi'] = 200
y = [1,2,3,4]
scale_ls = range(4)
index_ls = ["富强","民主","文明","和谐"]
plt.xticks(scale_ls,index_ls,fontsize=20)
plt.yticks([1,2,3,3.5,4],fontsize=20)
plt.plot(y)

5.给x轴和y轴加上名字

使用

  • xlabel(str,fontsize=int )
  • ylabel(str,fontsize=int )
plt.rcParams['figure.figsize'] = (10,5)
plt.rcParams['figure.dpi'] = 200
y = [1,2,3,4]
scale_ls = range(4)
index_ls = ["富强","民主","文明","和谐"]
plt.xticks(scale_ls,index_ls,fontsize=20)
plt.yticks([1,2,3,3.5,4],fontsize=20)
plt.xlabel("核心价值观", fontsize=20)
plt.ylabel("顺序", fontsize=20)
plt.plot(y)

6.加上网格

  • plt.grid(True),加上横纵两种网格。
  • plt.grid(True,axis="x"),加上x轴网格。
plt.rcParams['figure.figsize'] = (10,5)
plt.rcParams['figure.dpi'] = 200
y = [1,2,3,4]
scale_ls = range(4)
index_ls = ["富强","民主","文明","和谐"]
plt.xticks(scale_ls,index_ls,fontsize=20)
plt.yticks([1,2,3,3.5,4],fontsize=20)
plt.xlabel("核心价值观", fontsize=20)
plt.ylabel("顺序", fontsize=20)
plt.grid(True,axis="both")
plt.plot(y)

7.加上图例

使用legend方法,里面有这么几个参数

  • handles:代表使用的是那几个曲线的对象
  • labels:代表对应的图例文字
  • loc:放置的位置
  • prop:额外参数,例如size,控制图例大小
t = np.arange(0, 2.5, 0.01)
y1 = map(math.sin, math.pi*t)
y2 = map(math.cos, math.pi*t)
l1, = plt.plot(list(y1))
l2, = plt.plot(list(y2))
plt.legend(handles = [l1, l2], labels = ['Sin', 'Cos'], loc = 'best', prop={'size': 20})

8.给线状图标点

只用在plot加入参数marker 即可

t = np.arange(0, 2.5, 0.1)
y1 = map(math.sin, math.pi*t)
y2 = map(math.cos, math.pi*t)
l1, = plt.plot(list(y1), marker = "o")
l2, = plt.plot(list(y2), marker = "*")
plt.legend(handles = [l1, l2], labels = ['Sin', 'Cos'], loc = 'best', prop={'size': 20})

9.保存图片到本地

只用在最后使用savefig 方法

plt.savefig('test.png',dpi=400)

10.画子图

这里使用到了subplot方法

他有三个参数,分别为

  • 几行
  • 几列
  • 第几个

举个栗子

  1. subplot(2,2,1) 2行2列(即子图排列为田字格形状)第一个
  2. subplot(2,1,2) 2行1列(即子图排列为纵向两个图形状)第二个
t = np.arange(0, 2.5, 0.1)
y1 = map(math.sin, math.pi*t)
y2 = map(math.cos, math.pi*t) plt.subplot(2, 1, 1)
plt.title("Sin", fontsize=20)
l1, = plt.plot(list(y1), marker = "o") plt.subplot(2, 1, 2)
plt.title("Cos", fontsize=20)
l2, = plt.plot(list(y2), marker = "*")

这里我还使用到了title方法,给对应图表加上了标题。

利用matplotlib进行数据可视化的更多相关文章

  1. 基于matplotlib的数据可视化 - 笔记

    1 基本绘图 在plot()函数中只有x,y两个量时. import numpy as np import matplotlib.pyplot as plt # 生成曲线上各个点的x,y坐标,然后用一 ...

  2. matplotlib实现数据可视化

    一篇matplotlib库的学习博文.matplotlib对于数据可视化非常重要,它完全封装了MatLab的所有API,在python的环境下和Python的语法一起使用更是相得益彰. 一.库的安装和 ...

  3. 【Matplotlib】数据可视化实例分析

    数据可视化实例分析 作者:白宁超 2017年7月19日09:09:07 摘要:数据可视化主要旨在借助于图形化手段,清晰有效地传达与沟通信息.但是,这并不就意味着数据可视化就一定因为要实现其功能用途而令 ...

  4. 使用 jupyter-notebook + python + matplotlib 进行数据可视化

    上次用 python 脚本中定期查询数据库,监视订单变化,将时间与处理完成订单的数量进行输入写入日志,虽然省掉了人为定时查看数据库并记录的操作,但是数据不进行分析只是数据,要让数据活起来! 为了方便看 ...

  5. 如何最简便的利用Python实现数据可视化?当然离不开matplotlib!

    01|Figure和Subplot: matplotlib的图像全部在figure对象里面,就像是一片画布.figsize是figure的一个设置大小的属性.一个figure里面可以有无数个subpl ...

  6. 『Matplotlib』数据可视化专项

    一.相关知识 官网介绍 matplotlib API 相关博客 matplotlib绘图基础 漂亮插图demo 使用seaborn绘制漂亮的热度图 fig, ax = plt.subplots(2,2 ...

  7. 基于matplotlib的数据可视化 - 等高线 contour 与 contourf

    contour 与contourf 是绘制等高线的利器. contour  - 绘制等高线 contourf - 填充等高线 两个的返回值值是一样的(return values are the sam ...

  8. 利用pyecharts将数据可视化

    可视化展示在数据分析领域中是一个至关重要的点,好的可视化展示对我们的结果分析有更好的支持作用. 一.问题 在数据分析的时代里面我们需要将数据的可视化展现出来,更加方便用户的观察.如下图 有些时候我们需 ...

  9. 用matplotlib对数据可视化

    下图是要用到的数据集,反映了从1984到2016年的失业率的变化 1.导入可视化模块import matlibplot.pyplot as plt, 函数plt.plot(x, y)确定折线图的点,x ...

随机推荐

  1. eclipse安装tfs插件

    Eclipse安装TFS插件   1.打开Eclipse.点击菜单栏上的 “Help”——>选择“Install New Software”. 2.在弹出框中输入点击“Add”. 3.在弹出框中 ...

  2. 2019-2020-1 20199324《Linux内核原理与分析》第三周作业

    第二章 操作系统是如何工作的 一.知识点总结 1.计算机的三个法宝 存储程序计算机 函数调用堆栈机制.堆栈:是C语言程序运行时必须使用的记录函数调用路径和参数存储的空间. 中断 2.堆栈相关的寄存器和 ...

  3. 吴裕雄--天生自然C语言开发:指针

    #include <stdio.h> int main () { int var1; ]; printf("var1 变量的地址: %p\n", &var1 ) ...

  4. C++ sizeof 运算符

    sizeof 是一个关键字,它是一个编译时运算符,用于判断变量或数据类型的字节大小. sizeof 运算符可用于获取类.结构.共用体和其他用户自定义数据类型的大小. 使用 sizeof 的语法如下: ...

  5. Normal Probability Plots|outlier

    6.4 Assessing Normality; Normal Probability Plots The normal probability plot is a graphical techniq ...

  6. [LC] 244. Shortest Word Distance II

    Design a class which receives a list of words in the constructor, and implements a method that takes ...

  7. Euler characteristic

    Euler characteristic Euler定理 顶点(v),棱数(edge)(e),面(J) 尽管我们有四个不同的四面体,但是如果我们将顶点数\((v)\)减去棱数\((e)\)再加上四面体 ...

  8. python项目中对mysql数据库进行配置,并进行连接测试

    在settings.py中配置mysql数据库进行相关配置 DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME ...

  9. Serializable中的serialVersionUID是必须的吗

    不写serialVersionUID就没有吗 即使不写, jdk反序列化时也会自动检查这个id, 反编译.class文件你也看不到这个值 rpc反序列化 如果使用jdk的方式, 这个必须配置 如果使用 ...

  10. [LC] 62. Unique Paths

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...