VI.应用-Trajectory Data Mining
$textbf{Trajectory Data Mining: An Overview}$
很好的一篇概述,清晰明了地阐述了其框架,涉及内容又十分宽泛。值得细读。
未完成,需要补充。
- $textbf{Trajectory Data}$:主要分为四个类别
- $texttt{Mobility of people}$
- $texttt{Mobility of transportation}$
- $texttt{Mobility of animals}$
- $texttt{Mobility of natural phenomena}$
- $textbf{Trajectory Data Preprocessing}$
- $texttt{Noise Filtering}$
- $textit{Mean Filter}$
- $textit{Kalman and Particle Filters}$
- $textit{Heuristics-Based Outlier Detection}$
- $texttt{Stay Point Detection}$
- $texttt{Trajectory Compression}$:对轨迹数据进行压缩,以减少计算量
- $textit{Distance Metric}$
- $textit{Offline Compression}$
- $textit{Online Data Reduction}$
- $textit{Compression with Semantic Meaning}$
- $texttt{Trajectory Segmentation}$:对轨迹数据进行切割
- $textit{time interval}$
- $textit{shape of a trajectory}$
- $textit{semantic meanings}$
- $texttt{Map Matching}$:对原始的经纬度数据转化为路网数据
- $textit{geometric}$
- $textit{topological}$
- $textit{probabilis 大专栏 VI.应用-Trajectory Data Miningtic}$
- $textit{other advanced techniques}$
- $texttt{Noise Filtering}$
- $textbf{Trajectory Data Management}$
- $texttt{Trajectory Indexing and Retrieval}$:没看懂是为了解决什么问题
- $texttt{Distance/Similarity of Trajectories}$:了解一下度量方式
- $textbf{Uncertainty in Trajectory Data}$
- $texttt{Reducing Uncertainty from Trajectory Data}$:解决因采样率低,造成数据稀疏,不确定性增大等问题
- $textit{Modeling Uncertainty of a Trajectory for Queries}$
- $textit{Path Inference from Uncertain Trajectories}$
- $texttt{Privacy of Trajectory Data}$:为保护隐私性,需要增大数据的不确定性。
- $texttt{Reducing Uncertainty from Trajectory Data}$:解决因采样率低,造成数据稀疏,不确定性增大等问题
- $textbf{Trajectory Pattern Mining}$
- $texttt{Moving Together Patterns}$
- $texttt{Trajectory Clustering}$
- $texttt{Mining Sequential Patterns from Trajectories}$
- $texttt{Mining Periodical Patterns from Trajectories
}$
- $textbf{Trajectory Classification}$:做运动状态分类、交通方式分类等分类任务
- $textbf{Anomalies Detection From Trajectories}$
- $texttt{Detecting Outlier Trajectories}$
- $texttt{Identifying Anomalous Events by Trajectories}$
- $textbf{Transfer Trajectory To Other Representations}$
- $texttt{From Trajectory to Graph}$
- $texttt{From Trajectory to Matrix}$
- $texttt{From Trajectory to Tensor}$
VI.应用-Trajectory Data Mining的更多相关文章
- Distributed Databases and Data Mining: Class timetable
Course textbooks Text 1: M. T. Oszu and P. Valduriez, Principles of Distributed Database Systems, 2n ...
- What is the most common software of data mining? (整理中)
What is the most common software of data mining? 1 Orange? 2 Weka? 3 Apache mahout? 4 Rapidminer? 5 ...
- What’s the difference between data mining and data warehousing?
Data mining is the process of finding patterns in a given data set. These patterns can often provide ...
- A web crawler design for data mining
Abstract The content of the web has increasingly become a focus for academic research. Computer prog ...
- Datasets for Data Mining and Data Science
https://github.com/mattbane/RecommenderSystem http://grouplens.org/datasets/movielens/ KDDCUP-2012官网 ...
- cluster analysis in data mining
https://en.wikipedia.org/wiki/K-means_clustering k-means clustering is a method of vector quantizati ...
- Weka 3: Data Mining Software in Java
官方网站: Weka 3: Data Mining Software in Java 相关使用方法博客 WEKA使用教程(经典教程转载) (实例数据:bank-data.csv) Weka初步一.二. ...
- data mining,machine learning,AI,data science,data science,business analytics
数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics ...
- 数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics)之间有什么关系?
本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答 ...
随机推荐
- 2019年icpc上海网络赛 B Light bulbs (分块、差分)
https://nanti.jisuanke.com/t/41399 题目大意: 有n个灯,m次操作,每次修改[l,r]内的灯,(off - on ,on - off),问最后有几盏灯亮着. 换种说法 ...
- Codeforces Round #530 (Div. 2)F Cookies (树形dp+线段树)
题:https://codeforces.com/contest/1099/problem/F 题意:给定一个树,每个节点有俩个信息x和t,分别表示这个节点上的饼干个数和先手吃掉这个节点上一个饼干的的 ...
- 第二代网关GateWay搭建流程
Spring Cloud第二代网关GateWay是由纯Netty开发,底层为Reactor,WebFlux构建,不依赖任何Servlet容器,它不同于Zuul,使用的是异步IO,性能较Zuul提升1. ...
- jQuery性能优化与技巧
1.使用最新版本的jQuery类库 jQuery的每一个新的版本都会较上一版进行Bug修复和一些优化,同时也会包含一些创新,所以建议使用最新版本的jQuery来提高性能,需要注意的是在更换版本之后,要 ...
- 奇点云数据中台技术汇(五)| CDP,线下零售顾客运营中台
顾客数据平台(Customer Data Platform,简称CDP),是近年兴起的一种以顾客为核心.聚焦客群细分与人群洞察的企业数据应用平台. 听上去很互联网啊?跟实体行业和零售营销有什么关系呢? ...
- 105)PHP,递归删除目录
Unlink(文件地址)删除文件.
- Linux把内存挂载成硬盘提高读写速度
tmpfs是一种虚拟内存文件系统正如这个定义它最大的特点就是它的存储空间在VM里面,这里提一下VM(virtual memory),VM是由linux内核里面的vm子系统管理,现在大多数操作系统都采用 ...
- 安装与使用django-restframework
django-restframework 一.安装与使用 1.安装 >: pip3 install djangorestframework 2.使用 在settings.py中注册: INSTA ...
- smtp 邮件传输协议 qq版实现
qq: telnet smtp.qq.com 587 (qq邮箱说明:http://service.mail.qq.com/cgi-bin/help?subtype=1&&id=28& ...
- 浏览器证书问题,chorm,ie,edge,safari都会去读系统证书,firefox例外
坑爹 没想过浏览器兼容的问题. 为系统安装用户证书后, firefox一直无法连接 提示 连接 www.httpsserver.com:8985 时发生错误. SSL 对等端无法协商出一个可接受的安全 ...