$textbf{Trajectory Data Mining: An Overview}$

很好的一篇概述,清晰明了地阐述了其框架,涉及内容又十分宽泛。值得细读。

未完成,需要补充。

  1. $textbf{Trajectory Data}$:主要分为四个类别
    1. $texttt{Mobility of people}$
    2. $texttt{Mobility of transportation}$
    3. $texttt{Mobility of animals}$
    4. $texttt{Mobility of natural phenomena}$
  2. $textbf{Trajectory Data Preprocessing}$
    1. $texttt{Noise Filtering}$
      1. $textit{Mean Filter}$
      2. $textit{Kalman and Particle Filters}$
      3. $textit{Heuristics-Based Outlier Detection}$
    2. $texttt{Stay Point Detection}$
    3. $texttt{Trajectory Compression}$:对轨迹数据进行压缩,以减少计算量
      1. $textit{Distance Metric}$
      2. $textit{Offline Compression}$
      3. $textit{Online Data Reduction}$
      4. $textit{Compression with Semantic Meaning}$
    4. $texttt{Trajectory Segmentation}$:对轨迹数据进行切割
      1. $textit{time interval}$
      2. $textit{shape of a trajectory}$
      3. $textit{semantic meanings}$
    5. $texttt{Map Matching}$:对原始的经纬度数据转化为路网数据
      1. $textit{geometric}$
      2. $textit{topological}$
      3. $textit{probabilis 大专栏  VI.应用-Trajectory Data Miningtic}$
      4. $textit{other advanced techniques}$
  3. $textbf{Trajectory Data Management}$
    1. $texttt{Trajectory Indexing and Retrieval}$:没看懂是为了解决什么问题
    2. $texttt{Distance/Similarity of Trajectories}$:了解一下度量方式
  4. $textbf{Uncertainty in Trajectory Data}$
    1. $texttt{Reducing Uncertainty from Trajectory Data}$:解决因采样率低,造成数据稀疏,不确定性增大等问题
      1. $textit{Modeling Uncertainty of a Trajectory for Queries}$
      2. $textit{Path Inference from Uncertain Trajectories}$
    2. $texttt{Privacy of Trajectory Data}$:为保护隐私性,需要增大数据的不确定性。
  5. $textbf{Trajectory Pattern Mining}$
    1. $texttt{Moving Together Patterns}$
    2. $texttt{Trajectory Clustering}$
    3. $texttt{Mining Sequential Patterns from Trajectories}$
    4. $texttt{Mining Periodical Patterns from Trajectories
      }$
  6. $textbf{Trajectory Classification}$:做运动状态分类、交通方式分类等分类任务
  7. $textbf{Anomalies Detection From Trajectories}$
    1. $texttt{Detecting Outlier Trajectories}$
    2. $texttt{Identifying Anomalous Events by Trajectories}$
  8. $textbf{Transfer Trajectory To Other Representations}$
    1. $texttt{From Trajectory to Graph}$
    2. $texttt{From Trajectory to Matrix}$
    3. $texttt{From Trajectory to Tensor}$

VI.应用-Trajectory Data Mining的更多相关文章

  1. Distributed Databases and Data Mining: Class timetable

    Course textbooks Text 1: M. T. Oszu and P. Valduriez, Principles of Distributed Database Systems, 2n ...

  2. What is the most common software of data mining? (整理中)

    What is the most common software of data mining? 1 Orange? 2 Weka? 3 Apache mahout? 4 Rapidminer? 5 ...

  3. What’s the difference between data mining and data warehousing?

    Data mining is the process of finding patterns in a given data set. These patterns can often provide ...

  4. A web crawler design for data mining

    Abstract The content of the web has increasingly become a focus for academic research. Computer prog ...

  5. Datasets for Data Mining and Data Science

    https://github.com/mattbane/RecommenderSystem http://grouplens.org/datasets/movielens/ KDDCUP-2012官网 ...

  6. cluster analysis in data mining

    https://en.wikipedia.org/wiki/K-means_clustering k-means clustering is a method of vector quantizati ...

  7. Weka 3: Data Mining Software in Java

    官方网站: Weka 3: Data Mining Software in Java 相关使用方法博客 WEKA使用教程(经典教程转载) (实例数据:bank-data.csv) Weka初步一.二. ...

  8. data mining,machine learning,AI,data science,data science,business analytics

    数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics ...

  9. 数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics)之间有什么关系?

    本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答 ...

随机推荐

  1. 5.windows-oracle实战第五课 --事务、函数

    什么是事务        事务用于保证数据的一致性,它由一组相关的dml语句组成,该组的dml语句要么全部成功,要么全部失败. 事务和锁        当执行一个事务dml的时候,oracle会被作用 ...

  2. idea高效插件

    RestfulToolkit:url定位controller,快捷键:ctrl+\Maven Helper:依赖分析JRebel:热部署Rainbow Brackets:个性化花括号aiXcode:a ...

  3. 吴裕雄--天生自然 PYTHON3开发学习:函数

    def 函数名(参数列表): 函数体 # 计算面积函数 def area(width, height): return width * height def print_welcome(name): ...

  4. 可用的 .net core 支持 RSA 私钥加密工具类

    首先说明 MS并不建议私钥加密,而且.net 于安全的考虑,RSACryptoServiceProvider类解密时只有同时拥有公钥和私钥才可以,原因是公钥是公开的,会被多人持有,这样的数据传输是不安 ...

  5. 898A. Rounding#数的舍入

    题目出处:http://codeforces.com/problemset/problem/898/A 题目大意:找一个数最近的整十的数 #include<iostream> using ...

  6. 34)PHP,PHP从数据库读取数据并在html中显示

    首先是我的数据库截图: 然后展示我的php文件: b.php文件: <?php $link= mysqli_connect('localhost','root','root'); // mysq ...

  7. 吴裕雄--天生自然C语言开发:排序算法

    #include <stdio.h> void bubble_sort(int arr[], int len) { int i, j, temp; ; i < len - ; i++ ...

  8. python+locust性能测试-最简单的登录点击次数

    from locust import HttpLocust,TaskSet,task import os class UserBehavior(TaskSet): @task def login(se ...

  9. DataGrip设置时区

    新版本DataGrip以默认时区取世界标准时间.要想时间显示正常,需要将时区变为上海时区,可手动在连接配置里设置参数.如下图: 操作步骤1.右键打开你想要修改的数据库连接的Properties菜单:2 ...

  10. JwtUser JwtAuthenticationEntryPoint JwtAuthorizationTokenFilter JwtUserDetailsService AuthenticationController

    package me.zhengjie.core.security; import com.fasterxml.jackson.annotation.JsonIgnore; import lombok ...