VI.应用-Trajectory Data Mining
$textbf{Trajectory Data Mining: An Overview}$
很好的一篇概述,清晰明了地阐述了其框架,涉及内容又十分宽泛。值得细读。
未完成,需要补充。
- $textbf{Trajectory Data}$:主要分为四个类别
- $texttt{Mobility of people}$
- $texttt{Mobility of transportation}$
- $texttt{Mobility of animals}$
- $texttt{Mobility of natural phenomena}$
- $textbf{Trajectory Data Preprocessing}$
- $texttt{Noise Filtering}$
- $textit{Mean Filter}$
- $textit{Kalman and Particle Filters}$
- $textit{Heuristics-Based Outlier Detection}$
- $texttt{Stay Point Detection}$
- $texttt{Trajectory Compression}$:对轨迹数据进行压缩,以减少计算量
- $textit{Distance Metric}$
- $textit{Offline Compression}$
- $textit{Online Data Reduction}$
- $textit{Compression with Semantic Meaning}$
- $texttt{Trajectory Segmentation}$:对轨迹数据进行切割
- $textit{time interval}$
- $textit{shape of a trajectory}$
- $textit{semantic meanings}$
- $texttt{Map Matching}$:对原始的经纬度数据转化为路网数据
- $textit{geometric}$
- $textit{topological}$
- $textit{probabilis 大专栏 VI.应用-Trajectory Data Miningtic}$
- $textit{other advanced techniques}$
- $texttt{Noise Filtering}$
- $textbf{Trajectory Data Management}$
- $texttt{Trajectory Indexing and Retrieval}$:没看懂是为了解决什么问题
- $texttt{Distance/Similarity of Trajectories}$:了解一下度量方式
- $textbf{Uncertainty in Trajectory Data}$
- $texttt{Reducing Uncertainty from Trajectory Data}$:解决因采样率低,造成数据稀疏,不确定性增大等问题
- $textit{Modeling Uncertainty of a Trajectory for Queries}$
- $textit{Path Inference from Uncertain Trajectories}$
- $texttt{Privacy of Trajectory Data}$:为保护隐私性,需要增大数据的不确定性。
- $texttt{Reducing Uncertainty from Trajectory Data}$:解决因采样率低,造成数据稀疏,不确定性增大等问题
- $textbf{Trajectory Pattern Mining}$
- $texttt{Moving Together Patterns}$
- $texttt{Trajectory Clustering}$
- $texttt{Mining Sequential Patterns from Trajectories}$
- $texttt{Mining Periodical Patterns from Trajectories
}$
- $textbf{Trajectory Classification}$:做运动状态分类、交通方式分类等分类任务
- $textbf{Anomalies Detection From Trajectories}$
- $texttt{Detecting Outlier Trajectories}$
- $texttt{Identifying Anomalous Events by Trajectories}$
- $textbf{Transfer Trajectory To Other Representations}$
- $texttt{From Trajectory to Graph}$
- $texttt{From Trajectory to Matrix}$
- $texttt{From Trajectory to Tensor}$
VI.应用-Trajectory Data Mining的更多相关文章
- Distributed Databases and Data Mining: Class timetable
Course textbooks Text 1: M. T. Oszu and P. Valduriez, Principles of Distributed Database Systems, 2n ...
- What is the most common software of data mining? (整理中)
What is the most common software of data mining? 1 Orange? 2 Weka? 3 Apache mahout? 4 Rapidminer? 5 ...
- What’s the difference between data mining and data warehousing?
Data mining is the process of finding patterns in a given data set. These patterns can often provide ...
- A web crawler design for data mining
Abstract The content of the web has increasingly become a focus for academic research. Computer prog ...
- Datasets for Data Mining and Data Science
https://github.com/mattbane/RecommenderSystem http://grouplens.org/datasets/movielens/ KDDCUP-2012官网 ...
- cluster analysis in data mining
https://en.wikipedia.org/wiki/K-means_clustering k-means clustering is a method of vector quantizati ...
- Weka 3: Data Mining Software in Java
官方网站: Weka 3: Data Mining Software in Java 相关使用方法博客 WEKA使用教程(经典教程转载) (实例数据:bank-data.csv) Weka初步一.二. ...
- data mining,machine learning,AI,data science,data science,business analytics
数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics ...
- 数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics)之间有什么关系?
本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答 ...
随机推荐
- 5.windows-oracle实战第五课 --事务、函数
什么是事务 事务用于保证数据的一致性,它由一组相关的dml语句组成,该组的dml语句要么全部成功,要么全部失败. 事务和锁 当执行一个事务dml的时候,oracle会被作用 ...
- idea高效插件
RestfulToolkit:url定位controller,快捷键:ctrl+\Maven Helper:依赖分析JRebel:热部署Rainbow Brackets:个性化花括号aiXcode:a ...
- 吴裕雄--天生自然 PYTHON3开发学习:函数
def 函数名(参数列表): 函数体 # 计算面积函数 def area(width, height): return width * height def print_welcome(name): ...
- 可用的 .net core 支持 RSA 私钥加密工具类
首先说明 MS并不建议私钥加密,而且.net 于安全的考虑,RSACryptoServiceProvider类解密时只有同时拥有公钥和私钥才可以,原因是公钥是公开的,会被多人持有,这样的数据传输是不安 ...
- 898A. Rounding#数的舍入
题目出处:http://codeforces.com/problemset/problem/898/A 题目大意:找一个数最近的整十的数 #include<iostream> using ...
- 34)PHP,PHP从数据库读取数据并在html中显示
首先是我的数据库截图: 然后展示我的php文件: b.php文件: <?php $link= mysqli_connect('localhost','root','root'); // mysq ...
- 吴裕雄--天生自然C语言开发:排序算法
#include <stdio.h> void bubble_sort(int arr[], int len) { int i, j, temp; ; i < len - ; i++ ...
- python+locust性能测试-最简单的登录点击次数
from locust import HttpLocust,TaskSet,task import os class UserBehavior(TaskSet): @task def login(se ...
- DataGrip设置时区
新版本DataGrip以默认时区取世界标准时间.要想时间显示正常,需要将时区变为上海时区,可手动在连接配置里设置参数.如下图: 操作步骤1.右键打开你想要修改的数据库连接的Properties菜单:2 ...
- JwtUser JwtAuthenticationEntryPoint JwtAuthorizationTokenFilter JwtUserDetailsService AuthenticationController
package me.zhengjie.core.security; import com.fasterxml.jackson.annotation.JsonIgnore; import lombok ...