VI.应用-Trajectory Data Mining
$textbf{Trajectory Data Mining: An Overview}$
很好的一篇概述,清晰明了地阐述了其框架,涉及内容又十分宽泛。值得细读。
未完成,需要补充。
- $textbf{Trajectory Data}$:主要分为四个类别
- $texttt{Mobility of people}$
- $texttt{Mobility of transportation}$
- $texttt{Mobility of animals}$
- $texttt{Mobility of natural phenomena}$
- $textbf{Trajectory Data Preprocessing}$
- $texttt{Noise Filtering}$
- $textit{Mean Filter}$
- $textit{Kalman and Particle Filters}$
- $textit{Heuristics-Based Outlier Detection}$
- $texttt{Stay Point Detection}$
- $texttt{Trajectory Compression}$:对轨迹数据进行压缩,以减少计算量
- $textit{Distance Metric}$
- $textit{Offline Compression}$
- $textit{Online Data Reduction}$
- $textit{Compression with Semantic Meaning}$
- $texttt{Trajectory Segmentation}$:对轨迹数据进行切割
- $textit{time interval}$
- $textit{shape of a trajectory}$
- $textit{semantic meanings}$
- $texttt{Map Matching}$:对原始的经纬度数据转化为路网数据
- $textit{geometric}$
- $textit{topological}$
- $textit{probabilis 大专栏 VI.应用-Trajectory Data Miningtic}$
- $textit{other advanced techniques}$
- $texttt{Noise Filtering}$
- $textbf{Trajectory Data Management}$
- $texttt{Trajectory Indexing and Retrieval}$:没看懂是为了解决什么问题
- $texttt{Distance/Similarity of Trajectories}$:了解一下度量方式
- $textbf{Uncertainty in Trajectory Data}$
- $texttt{Reducing Uncertainty from Trajectory Data}$:解决因采样率低,造成数据稀疏,不确定性增大等问题
- $textit{Modeling Uncertainty of a Trajectory for Queries}$
- $textit{Path Inference from Uncertain Trajectories}$
- $texttt{Privacy of Trajectory Data}$:为保护隐私性,需要增大数据的不确定性。
- $texttt{Reducing Uncertainty from Trajectory Data}$:解决因采样率低,造成数据稀疏,不确定性增大等问题
- $textbf{Trajectory Pattern Mining}$
- $texttt{Moving Together Patterns}$
- $texttt{Trajectory Clustering}$
- $texttt{Mining Sequential Patterns from Trajectories}$
- $texttt{Mining Periodical Patterns from Trajectories
}$
- $textbf{Trajectory Classification}$:做运动状态分类、交通方式分类等分类任务
- $textbf{Anomalies Detection From Trajectories}$
- $texttt{Detecting Outlier Trajectories}$
- $texttt{Identifying Anomalous Events by Trajectories}$
- $textbf{Transfer Trajectory To Other Representations}$
- $texttt{From Trajectory to Graph}$
- $texttt{From Trajectory to Matrix}$
- $texttt{From Trajectory to Tensor}$
VI.应用-Trajectory Data Mining的更多相关文章
- Distributed Databases and Data Mining: Class timetable
Course textbooks Text 1: M. T. Oszu and P. Valduriez, Principles of Distributed Database Systems, 2n ...
- What is the most common software of data mining? (整理中)
What is the most common software of data mining? 1 Orange? 2 Weka? 3 Apache mahout? 4 Rapidminer? 5 ...
- What’s the difference between data mining and data warehousing?
Data mining is the process of finding patterns in a given data set. These patterns can often provide ...
- A web crawler design for data mining
Abstract The content of the web has increasingly become a focus for academic research. Computer prog ...
- Datasets for Data Mining and Data Science
https://github.com/mattbane/RecommenderSystem http://grouplens.org/datasets/movielens/ KDDCUP-2012官网 ...
- cluster analysis in data mining
https://en.wikipedia.org/wiki/K-means_clustering k-means clustering is a method of vector quantizati ...
- Weka 3: Data Mining Software in Java
官方网站: Weka 3: Data Mining Software in Java 相关使用方法博客 WEKA使用教程(经典教程转载) (实例数据:bank-data.csv) Weka初步一.二. ...
- data mining,machine learning,AI,data science,data science,business analytics
数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics ...
- 数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics)之间有什么关系?
本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答 ...
随机推荐
- goweb-处理静态资源
处理静态文件 对于 HTML 页面中的 css 以及 js 等静态文件,需要使用使用 net/http 包下的以下 方法来处理 1) StripPrefix 函数 2) FileServer 函数 3 ...
- ESLint javascript格式要求
首行缩进2个空格 eslint: indent functionhello (name) { console.log('hi', name) } 字符串使用单引号(除了避免转义) eslint: qu ...
- c语言中fflush的运用为什么没有效果呢,测试平台linux
/************************************************************************* > File Name: clearing. ...
- 2019-ECfinal-M题-value
题目传送门 sol:每个下标都有选和不选两种情况,所以总方案数是$2^{n}$,在$n$最大是$100000$的情况下不符合要求.可以这样想,假设$i^{p}=k$有符合题目要求的解,还有一个整数$j ...
- Durandal入门
参考:http://www.360doc.com/content/14/1223/11/13819_435123743.shtml 示例代码下载地址:http://durandaljs.com/ver ...
- 搜刮一些开源项目的APP
iOS完整App资源收集 <iOS完整app资源收集> <GitHub 上有哪些完整的 iOS-App 源码值得参考?> <GitHub 上有哪些完整的 iOS-App ...
- TOJ-3474 The Big Dance(递归二分)
链接:https://ac.nowcoder.com/acm/contest/1077/L 题目描述 Bessie and the herd, N (1 <= N <= 2,200) co ...
- vue实现动态绑定class--多个按钮点击一个有一个
<template> //v-for循环出来多个按钮,便于获取index <span v-for="(item,index) in list" : ...
- BigDecimal进行精确运算
public class Test_1 { public static void main(String[] args) { System.out.println(0.06+0.01); System ...
- WWT在中国:一个改变了人类探索宇宙方式的少年梦想
想象一下,在宇宙中超光速飞行,访问行星.星云.恒星和小行星将是多么美妙的体验.现在,中国的孩子们已经可以坐在屋子里,仰望穹顶,去探索星球之间无穷的奥秘. 在微软研究院.微软亚洲研究院及中国科学院国家天 ...