Python专题——详解enumerate和zip
本文始发于个人公众号:TechFlow,原创不易,求个关注
今天是Python专题的第7篇文章,我们继续介绍迭代相关。
enumerate
首先介绍的是enumerate函数。
在我们日常编程的过程当中,经常会遇到一个问题。
在C语言以及一些古老的语言当中是没有迭代器这个概念的,所以我们要遍历数组或者是容器的时候,往往只能通过下标。有了迭代器之后,我们遍历的过程方便了很多,我们可以直接用一个变量去迭代一个容器当中的值。最简单的例子就是数组的遍历,比如我们要遍历items这个数组。我们可以直接:
for item in items:
通过迭代器的方式我们可以很轻松地遍历数组,而不再需要下标,也不需要计算数组的长度了。但是如果我们在循环体当中需要知道元素的下标该怎么办?
难道我们真的只能在下标和迭代器当中选择一个吗,比如在循环体的外面添加一个变量来记录下标?
idx = 0
for item in items:
operation()
idx += 1
这样可以解决问题,但是很麻烦,一点也不简洁,用专业的话来说一点也不pythonic(符合Python标准的代码)。为了追求pythonic,于是有了enumerate函数,来解决了我们又想直接迭代又需要知道元素下标的情形。
它的用法也很简单,我们把需要迭代的对象或者迭代器传入enumerate函数当中,它会为我们创建一个新的迭代器,同时返回下标以及迭代的内容。我们来看一个例子:
for i, item in enumerate(items):
除此之外,enumerate还支持传入参数。比如在某些场景当中,我们希望下标从1开始,而不再是0开始,我们可以额外多传入一个参数实现这点:
for i, item in enumerate(items, 1):
循环是我们编程的时候必不可少的操作,也正因此,enumerate函数使用非常广泛。但是有一点需要注意,如果我们迭代的是一个多元组数组,我们需要注意要将index和value区分开。举个例子:
data = [(1, 3), (2, 1), (3, 3)]
在不用enumerate的时候,我们有两种迭代方式,这两种都可以运行。
for x, y in data:
for (x, y) in data:
但是如果我们使用enumerate的话,由于引入了一个index,我们必须要做区分,否则会报错,所以我们只有一种迭代方式:
for i, (x, y) in enumerate(data):
zip
接下来要介绍的另一个函数同样是方便我们迭代的,不过它针对的是另一个场景——多对象迭代。
它的应用场景非常简单,就是我们想要同时迭代多份数据,比如用户的名字和用户的职业数据是分开的,我们希望同时遍历一个用户的职业和名字。如果不使用zip,我们可能只能放弃迭代器回到传统的下标遍历的模式了。这样当然是可以的,不过有两个小问题,第一个小问题当然是代码的可读性变差了,不够pythonic,第二个问题是我们需要维护两个容器长度不一样的情况,会增加额外的代码。而使用zip,可以同时解决以上两个问题。
我们来看一个例子:
names = ['xiaoming', 'xiaohua', 'xiaohei', 'xiaoli']
jobs = ['coach', 'student', 'student', 'student', 'professor']
for name, job in zip(names, jobs):
print(name, job)
最后输出的结果是人名和职业的tuple:
xiaoming coach
xiaohua student
xiaohei student
xiaoli student
上面举的例子当中,names和jobs的长度其实是不一致的,在使用了zip的情况下,会自动替我们按照其中较短的那个进行截断。如果我们不希望截断,我们也可以使用itertools下的zip_longest来代替zip:
from itertools import zip_longest
for name, job in zip_longest(names, jobs):
这样的话长度不够的元素会以None来填充,zip_longest提供了一个参数fillvalue,可以填充成我们指定的值。
无论是zip还是zip_longest,都可以支持多迭代器的遍历。比如:
names = ['xiaoming', 'xiaohua', 'xiaohei', 'xiaoli']
jobs = ['coach', 'student', 'student', 'student', 'professor']
hobbies = ['footbal', 'tennis', 'badminton', 'basketbal']
for name, job, hobby in zip(names, jobs, hobbies):
print(name, job, hobby)
zip除了方便我们迭代遍历之外,另一个很大的用处是可以很方便地生成dict。比如刚才的例子当中,我们想生成一个名称和职业的dict,一般的办法当然是先定义一个dict,然后遍历所有的key和value,来生成dict。然而使用zip,我们可以将这个操作简化到一行代码:
jobDict = dict(zip(names, jobs))
需要注意的是,我们调用zip返回的结果其实是一个迭代器,我们在转化成dict的时候自动遍历了迭代器当中的内容。比如我们如果直接打印出zip调用结果的话,就会发现屏幕上输出的是一个迭代器的地址:
print(zip(names, jobs))
>>> <zip object at 0x10ec93b40>
我们想要获得它的内容,需要将它手动转成list:
print(list(zip(names, jobs)))
>>> [('xiaoming', 'coach'), ('xiaohua', 'student'), ('xiaohei', 'student'), ('xiaoli', 'student')]
无论是enumerate还是zip其实底层都是基于迭代器实现的,从原理上来说并没有什么太深奥的内容,而且我们不使用它们也不影响我们写代码。但是Python之所以是Python,之所以很多人称道它简洁的语言和逻辑,离不开我们广泛地使用这些简化代码逻辑的工具和方法。因此我们加以了解是非常有必要的,希望大家都能写出pythonic的代码,不仅写代码能力强,而且代码本身也漂亮。
今天的文章就是这些,如果觉得有所收获,请顺手点个关注或者转发吧,你们的举手之劳对我来说很重要。
Python专题——详解enumerate和zip的更多相关文章
- Python专题之详解enumerate和zip
enumerate 第一个是枚举函数. 在我们的日常编程过程中,我们经常遇到一个问题. 在C语言和一些古老的语言中没有迭代器的概念,所以当我们想要遍历数组或容器时,我们只能使用下标.使用迭代器,我们的 ...
- python线程详解
#线程状态 #线程同步(锁)#多线程的优势在于可以同时运行多个任务,至少感觉起来是这样,但是当线程需要共享数据时,可能存在数据不同步的问题. #threading模块#常用方法:'''threadin ...
- Python闭包详解
Python闭包详解 1 快速预览 以下是一段简单的闭包代码示例: def foo(): m=3 n=5 def bar(): a=4 return m+n+a return bar >> ...
- [转] Python Traceback详解
追莫名其妙的bugs利器-mark- 转自:https://www.jianshu.com/p/a8cb5375171a Python Traceback详解 刚接触Python的时候,简单的 ...
- python 数据类型详解
python数据类型详解 参考网址:http://www.cnblogs.com/linjiqin/p/3608541.html 目录1.字符串2.布尔类型3.整数4.浮点数5.数字6.列表7.元组8 ...
- Python 递归函数 详解
Python 递归函数 详解 在函数内调用当前函数本身的函数就是递归函数 下面是一个递归函数的实例: 第一次接触递归函数的人,都会被它调用本身而搞得晕头转向,而且看上面的函数调用,得到的结果会 ...
- python数据类型详解(全面)
python数据类型详解 目录1.字符串2.布尔类型3.整数4.浮点数5.数字6.列表7.元组8.字典9.日期 1.字符串1.1.如何在Python中使用字符串a.使用单引号(')用单引号括起来表示字 ...
- Python Collections详解
Python Collections详解 collections模块在内置数据结构(list.tuple.dict.set)的基础上,提供了几个额外的数据结构:ChainMap.Counter.deq ...
- python生成器详解
1. 生成器 利用迭代器(迭代器详解python迭代器详解),我们可以在每次迭代获取数据(通过next()方法)时按照特定的规律进行生成.但是我们在实现一个迭代器时,关于当前迭代到的状态需要我们自己记 ...
随机推荐
- 了解DocumentFragment 给我们带来的性能优化
首先我们需要了解 DocumentFragment 是什么? w3c 上面的详细解释:link here 我把关键点写下来了: DocumentFragment 节点不属于文档树,继承的 parent ...
- 前端自动化构建工具gulp
1.gulp的安装 首先确保你已经正确安装了nodejs环境.然后以全局方式安装gulp: npm install -g gulp 全局安装gulp后,还需要在每个要使用gulp的项目中都单独安装一次 ...
- <SCOI2005>互不侵犯の思路
日常玄学dp #include<cstdio> #include<cstring> #include<iostream> #include<algorithm ...
- <NOIP2005提高T2>过河の思路
emm又一道dp dp真有趣(你的良心呢?!!! Description 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一 ...
- 中国的规模优势,有望帮助AI芯片后来者居上?
芯片一直是个神奇的东西,表面上看是电脑.笔记本.智能手机改变了世界,其实,真正改变世界的硬件内核是芯片,芯片相关的技术才是科技界最实用.最浪漫的基础技术,也正因如此,谁掌握了芯片基础技术,谁就能立于 ...
- mysql中tinyint、smallint、int和bigint类型的用法区别
mysql中tinyint.smallint.int和bigint类型的用法区别: 在MySQL的数据类型中,Tinyint的取值范围是:带符号的范围是-128到127.无符号的范围是0到255(见官 ...
- Python程序运行流程与垃圾回收机制
Python程序运行流程 Python解释器首先将程序将py文件编译成一个字节码对象PyCodeObject(只存在于内存中).(当这个模块的 Python 代码执行完后,就会将编译结果保存到了pyc ...
- 使用 JavaScript 创建并下载文件
先上代码 Blob 对象 Blob URLs 模拟 click 小结 参考 本文将介绍如何使用 JavaScript 创建文件,并自动/手动将文件下载.这在导出原始数据时会比较方便. 先上代码 /** ...
- 谈谈从事IT测试行业的我,对于买房买车有什么样的感受
周边测试同事,开发同事买?买?的比较多, 偶尔大家话题中也会谈起这个. 毕竟工作.衣.食.住.行和我们每个IT从业者息息相关, 大家有着相同或相似的感受与经验. - 前公司 以前公司测试经理 10年从 ...
- Linux 信号介绍
是内容受限时的一种异步通信机制 首先是用来通信的 是异步的 本质上是 int 型的数字编号,早期Unix系统只定义了32种信号,Ret hat7.2支持64种信号,编号0-63(SIGRTMIN=31 ...