ID3/C4.5/Gini Index

*/-->

ID3/C4.5/Gini Index

1 ID3

Select the attribute with the highest information gain.

1.1 Formula

1.2 Formula

Let pi be the probability that an arbitrary tuple in D belongs to class Ci, estimated by |C(i,D)|/|D|.
Expected information need to classify a tuple in D:
$$Info(D) = -\sum\limits_{i=1}^n{P_i}log_2P_i$$
Information needed (after using A to split D into v partitions)to classify D:
$$Info_A(D) = \sum\limits_{j=1}^v\frac{|D_j|}{|D|}Info(D_j)$$
So, information gained by branching on attribute A:
$$Gain(A) = Info(D)-Info_A(D)$$

1.3 Example

age income Student creditrating buyscomputer
<= 30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes excellent yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

Class P:buyscomputer = "yes"
Class N:buyscomputer = "no"
the number of classs P is 9,while the number of class N is 5.

So,$$Info(D) = -\frac{9}{14}log_2\frac{9}{14} - \frac{5}{14}log_2\frac{5}{14} = 0.940$$

In Attribute age, the number of class P is 2,while the number of class N is 3.
So,$$Info(D_{
Similarly,
$$Info(D_{31...40}) = 0$$,$$Info(D_{>40}) = 0.971$$
Then,$$Info_{age}(D) = \frac{5}{14}Info(D_{40}) = 0.694$$
Therefore,$$Gain(age) = Info(D) - Info_age(D) = 0.246$$
Similarly,
$$Gain(income) = 0.029$$
$$Gain(Student) = 0.151$$
$$Gain(credit_rating) = 0.048$$

1.4 Question

What if the attribute's value is continuous? How can we handle it?
1.The best split point for A
+Sort the value A in increasing order
+Typically, the midpoint between each pair of adjacent values is considered as a possible split point
-(a i +a i+1 )/2 is the midpoint between the values of a i and a i+1
+The point with the minimum expected information requirement for A is selected as the split-point for A
2.Split:
+D1 is the set of tuples in D satisfying A ≤ split-point, and D2 is the set of tuples in D satisfying A > split-point.

2 C4.5

C4.5 is a successor of ID3.

2.1 Formula

$$SpiltInfo_A(D) = -\sum\limits_{j=1}^v\frac{|D_j|}{|D|}*log_2\frac{|D_j|}{|D|}$$
Then the GainRatio equals to,
$$GainRatio(A=Gain(A)/SplitInfo(A)$$
The attribute with the maximun gain ratio is selected as the splitting attribute.

3 Gini Index

3.1 Formula

If a data set D contains examples from n classes, gini index gini(D) is defined as
$$gini(D) = 1 - \sum\limits_{j=1}^nP_j^2$$
where pj is the relative frequency of class j in D.
If Data set D is split on A which have n classes.Then
$$gini_A(D) = \sum\limits_{i=1}^n\frac{D_i}{D}gini(D_i)$$
Reduction in Impurity
$$\Delta gini(A) = gini(D)-gini_A(D)$$

4 Summary

ID3/C4.5 isn't suitable for large amount of trainning set,because they have to repeat to sort and scan training set for many times. That will cost much time than other classification alogrithms.
The three measures,in general, return good results but
1.Information gain:
-biased towards multivalued attributes
2.Gain ratio:
-tends to prefer unbalanced splits in which one partition is much smaller than the other.
3.Gini index:
-biased towards multivalued attributes
-has difficulty when # of classes is large
-tends to favor tests that result in equal-sized partitions and purity in both partitions.

5 Other Attribute Selection Measures

1.CHAID: a popular decision tree algorithm, measure based on χ 2 test for independence
2.C-SEP: performs better than info. gain and gini index in certain cases
3.G-statistics: has a close approximation to χ 2 distribution
4.MDL (Minimal Description Length) principle (i.e., the simplest solution
is preferred):
The best tree as the one that requires the fewest # of bits to both
(1) encode the tree, and (2) encode the exceptions to the tree
5.Multivariate splits (partition based on multiple variable combinations)
CART: finds multivariate splits based on a linear comb. of attrs.
Which attribute selection measure is the best?
Most give good results, none is significantly superior than others

Author: mlhy

Created: 2015-10-06 二 14:39

Emacs 24.5.1 (Org mode 8.2.10)

ID3/C4.5/Gini Index的更多相关文章

  1. Theoretical comparison between the Gini Index and Information Gain criteria

    Knowledge Discovery in Databases (KDD) is an active and important research area with the promise for ...

  2. 决策树(ID3,C4.5,CART)原理以及实现

    决策树 决策树是一种基本的分类和回归方法.决策树顾名思义,模型可以表示为树型结构,可以认为是if-then的集合,也可以认为是定义在特征空间与类空间上的条件概率分布. [图片上传失败...(image ...

  3. ID3\C4.5\CART

    目录 树模型原理 ID3 C4.5 CART 分类树 回归树 树创建 ID3.C4.5 多叉树 CART分类树(二叉) CART回归树 ID3 C4.5 CART 特征选择 信息增益 信息增益比 基尼 ...

  4. 多分类度量gini index

    第一份工作时, 基于 gini index 写了一份决策树代码叫ctree, 用于广告推荐. 今天想起来, 好像应该有开源的其他方法了. 参考 https://www.cnblogs.com/mlhy ...

  5. 决策树模型 ID3/C4.5/CART算法比较

    决策树模型在监督学习中非常常见,可用于分类(二分类.多分类)和回归.虽然将多棵弱决策树的Bagging.Random Forest.Boosting等tree ensembel 模型更为常见,但是“完 ...

  6. 用于分类的决策树(Decision Tree)-ID3 C4.5

    决策树(Decision Tree)是一种基本的分类与回归方法(ID3.C4.5和基于 Gini 的 CART 可用于分类,CART还可用于回归).决策树在分类过程中,表示的是基于特征对实例进行划分, ...

  7. 决策树 ID3 C4.5 CART(未完)

    1.决策树 :监督学习 决策树是一种依托决策而建立起来的一种树. 在机器学习中,决策树是一种预测模型,代表的是一种对象属性与对象值之间的一种映射关系,每一个节点代表某个对象,树中的每一个分叉路径代表某 ...

  8. 21.决策树(ID3/C4.5/CART)

    总览 算法   功能  树结构  特征选择  连续值处理 缺失值处理  剪枝  ID3  分类  多叉树  信息增益   不支持 不支持  不支持 C4.5  分类  多叉树  信息增益比   支持 ...

  9. ID3,C4.5和CART三种决策树的区别

    ID3决策树优先选择信息增益大的属性来对样本进行划分,但是这样的分裂节点方法有一个很大的缺点,当一个属性可取值数目较多时,可能在这个属性对应值下的样本只有一个或者很少个,此时它的信息增益将很高,ID3 ...

随机推荐

  1. MFC OCX 控件事件的添加和处理

    1.控件的事件一般都是由对外的接口引发到,这里定一个接口先: 该接口有一个字符串参数,表示调用者将传入一个字符串,传进来后,我们将取得字符串的长度. 2.添加事件: 事件应该是属于窗口的,所以在Ctr ...

  2. windows driver 获取文件属性

    OBJECT_ATTRIBUTES oa; FILE_NETWORK_OPEN_INFORMATION fnoi; UNICODE_STRING strPath = RTL_CONSTANT_STRI ...

  3. Distributed--分布式架构

    如果我们期望实现一套严格满足ACID特性的分布式事务,很可能出现的情况就是在系统的可用性和严格一致性之间出现冲突. 在可用性和一致性之间,永远无法存在一个两全其美的方案. 从集中式到分布式 集中式系统 ...

  4. Day1-T1

    原题目 Describe:普通前缀和(当然有升级版的题目,范围3000+) code: #include<bits/stdc++.h> #define maxn 1010 #define ...

  5. Eclipse 快速打开文件所在的本地目录

    目前收集到两种方法: 1.快捷键:Ctrl+Shift+W 2.利用Eclipse的External Tools设置快捷方式 第二种方法步骤: a.Run->External Tools-> ...

  6. springboot-war

    预览 1.pom.xml 与springboot-jar-web的区别是: 将 <packaging>jar</packaging> 替换成: <packaging> ...

  7. JetBrains,vim配置文件, .ideavimrc

    addr: https://github.com/NorseLZJ/lzj-config/tree/master/idea_vim

  8. css 居中布局方案

    position(transform css3  有些浏览器不兼容) <article id="one"> <section id="section&q ...

  9. 冒泡排序_python

    def popdata(ls): for i in range(len(ls)): for j in range(i+1,len(ls)): if ls[i]>ls[j]: # tmp=ls[i ...

  10. git登录账号密码错误remote: Incorrect username or password (access token)

    git提交时弹框让输入用户和密码,不小心输入错误了 再次提交 一直就提示  remote: Incorrect username or password 错误了,也不弹框要重新输入 解决方法 win1 ...