HDU–5988-Coding Contest(最小费用最大流变形)
Coding Contest
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2653 Accepted Submission(s): 579
Problem Description
A coding contest will be held in this university, in a huge playground. The whole playground would be divided into N blocks, and there would be M directed paths linking these blocks. The i-th path goes from the ui-th block to the vi-th block. Your task is to solve the lunch issue. According to the arrangement, there are si competitors in the i-th block. Limited to the size of table, bi bags of lunch including breads, sausages and milk would be put in the i-th block. As a result, some competitors need to move to another block to access lunch. However, the playground is temporary, as a result there would be so many wires on the path.
For the i-th path, the wires have been stabilized at first and the first competitor who walker through it would not break the wires. Since then, however, when a person go through the i - th path, there is a chance of pi to touch
the wires and affect the whole networks. Moreover, to protect these wires, no more than ci competitors are allowed to walk through the i-th path.
Now you need to find a way for all competitors to get their lunch, and minimize the possibility of network crashing.
Input
The first line of input contains an integer t which is the number of test cases. Then t test cases follow.
For each test case, the first line consists of two integers N (N ≤ 100) and M (M ≤ 5000). Each of the next N lines contains two integers si and bi (si , bi ≤ 200).
Each of the next M lines contains three integers ui , vi and ci(ci ≤ 100) and a float-point number pi(0 < pi < 1).
It is guaranteed that there is at least one way to let every competitor has lunch.
Output
For each turn of each case, output the minimum possibility that the networks would break down. Round it to 2 digits.
Sample Input
1
4 4
2 0
0 3
3 0
0 3
1 2 5 0.5
3 2 5 0.5
1 4 5 0.5
3 4 5 0.5
Sample Output
0.50 思路: 这是一个最小费用最大流的变形题目。 要仔细读懂题目,题目要求的是崩溃的最小可能性。由于崩溃可能是由一条边或多条边一起的,所以正着求崩溃概率很难求,我们反着思考,用1去减每条边都不引起图崩溃的概率即为崩溃的概率。 由于求的是最小,而且边有容量限制,我们很自然的想到了最小费用最大流(对于不崩溃的概率应该是最大费用最大流) 建图时,某个点有人则想s连一条容量为人数的边,有食物则向t连一条容量为是无数的边,其他的边按照题目的数据相连即可,这个很好处理。 还有一个条件是某条路第一遍走的时候是没有花费的。我的处理方法是将一条容量为c,花费为w的边拆成两条边:容量为c-1,花费为w的一条边;容量为1,花费为1.0的一条边(花费为1.0是为了确保不会对最终结果产生影响)。 细节很多,由于概率要想乘所以初始化时要注意,算一条增广路径对总结果的贡献时也要注意是乘方而不是简单的相乘。 代码1:求增广路径时直接求最长路
1 /*
2 * @FileName: D:\代码与算法\2017训练比赛\2016青岛区域赛\g.cpp
3 * @Author: Pic
4 * @Created Time: 2017/10/7 12:46:48
5 */
6 #include <bits/stdc++.h>
7 using namespace std;
8 const double INF = -1*10.0;
9 const int maxn=200+10;
10
11 struct Edge
12 {
13 int from,to,cap,flow;
14 double cost;
15 Edge(){}
16 Edge(int f,int t,int c,int fl,double co):from(f),to(t),cap(c),flow(fl),cost(co){}
17 };
18
19 struct MCMF
20 {
21 int n,m,s,t;
22 vector<Edge> edges;
23 vector<int> G[maxn];
24 bool inq[maxn]; //是否在队列
25 double d[maxn]; //Bellman_ford单源最短路径
26 int p[maxn]; //p[i]表从s到i的最小费用路径上的最后一条弧编号
27 int a[maxn]; //a[i]表示从s到i的最小残量
28
29 //初始化
30 void init(int n,int s,int t)
31 {
32 this->n=n, this->s=s, this->t=t;
33 edges.clear();
34 for(int i=0;i<n;++i) G[i].clear();
35 }
36
37 //添加一条有向边
38 void AddEdge(int from,int to,int cap,double cost)
39 {
40 edges.push_back(Edge(from,to,cap,0,cost));
41 edges.push_back(Edge(to,from,0,0,-cost));
42 m=edges.size();
43 G[from].push_back(m-2);
44 G[to].push_back(m-1);
45 }
46
47 //求一次增广路
48 bool BellmanFord(int &flow, double &cost)
49 {
50 for(int i=0;i<n;++i) d[i]=INF;
51 memset(inq,0,sizeof(inq));
52 d[s]=1.0, a[s]=1e9+30, inq[s]=true, p[s]=0;
53 queue<int> Q;
54 Q.push(s);
55 while(!Q.empty())
56 {
57 //cout<<"Q"<<endl;
58 int u=Q.front(); Q.pop();
59 inq[u]=false;
60 for(int i=0;i<G[u].size();++i)
61 {
62 Edge &e=edges[G[u][i]];
63 double tmp=(d[u]*e.cost);
64 //tmp=-1*fabs(tmp);
65 if( e.cap>e.flow && d[e.to] < tmp )
66 {
67 d[e.to]=tmp;
68 p[e.to]=G[u][i];
69 a[e.to]= min(a[u],e.cap-e.flow);
70 if(!inq[e.to]){ Q.push(e.to); inq[e.to]=true; }
71 }
72 }
73 }
74 //cout<<d[t]<<endl;
75 //if(fabs(d[t]-INF)<1e-3) return false;
76 if(d[t]<0) return false;
77 flow += a[t];
78 for(int i=0;i<a[t];i++) cost*=(d[t]);
79 int u=t;
80 while(u!=s)
81 {
82 edges[p[u]].flow += a[t];
83 edges[p[u]^1].flow -=a[t];
84 u = edges[p[u]].from;
85 }
86 return true;
87 }
88
89 //求出最小费用最大流
90 double Min_cost()
91 {
92 int flow=0;double cost=1.0;
93 while(BellmanFord(flow,cost)) ;
94 return cost;
95 }
96 }MM;
97 int main()
98 {
99 // freopen("data.in","r",stdin);
100 //freopen("data.out","w",stdout);
101 int t;
102 scanf("%d",&t);
103 while(t--){
104 int n,m;
105 scanf("%d%d",&n,&m);
106 MM.init(n+2,0,n+1);
107 int x,y;
108 for(int i=1;i<=n;i++){
109 scanf("%d%d",&x,&y);
110 if(x!=0)
111 MM.AddEdge(0,i,x,1.0);
112 if(y!=0)
113 MM.AddEdge(i,n+1,y,1.0);
114 }
115 int u,v,c;double w;
116 for(int i=1;i<=m;i++){
117 scanf("%d%d%d%lf",&u,&v,&c,&w);
118 //MM.AddEdge(u,v,c,w);
119 if(c>0){
120 MM.AddEdge(u,v,c-1,1.0-w);
121 MM.AddEdge(u,v,1,1.0);
122 }
123 }
124 double res=fabs(MM.Min_cost());
125 //cout<<res<<endl;
126 res=1.0-res;
127 if(res>=1.0) res=1.0;
128 printf("%.2lf\n",res);
129 }
130 return 0;
131 }代码2:花费取负,求最小费用最大流,注意初始化的值
1 /*
2 * @FileName: D:\代码与算法\2017训练比赛\2016青岛区域赛\g.cpp
3 * @Author: Pic
4 * @Created Time: 2017/10/7 12:46:48
5 */
6 #include <bits/stdc++.h>
7 using namespace std;
8 const double INF = 1e8;
9 const int maxn=200+10;
10
11 struct Edge
12 {
13 int from,to,cap,flow;
14 double cost;
15 Edge(){}
16 Edge(int f,int t,int c,int fl,double co):from(f),to(t),cap(c),flow(fl),cost(co){}
17 };
18
19 struct MCMF
20 {
21 int n,m,s,t;
22 vector<Edge> edges;
23 vector<int> G[maxn];
24 bool inq[maxn]; //是否在队列
25 double d[maxn]; //Bellman_ford单源最短路径
26 int p[maxn]; //p[i]表从s到i的最小费用路径上的最后一条弧编号
27 int a[maxn]; //a[i]表示从s到i的最小残量
28
29 //初始化
30 void init(int n,int s,int t)
31 {
32 this->n=n, this->s=s, this->t=t;
33 edges.clear();
34 for(int i=0;i<n;++i) G[i].clear();
35 }
36
37 //添加一条有向边
38 void AddEdge(int from,int to,int cap,double cost)
39 {
40 edges.push_back(Edge(from,to,cap,0,cost));
41 edges.push_back(Edge(to,from,0,0,-cost));
42 m=edges.size();
43 G[from].push_back(m-2);
44 G[to].push_back(m-1);
45 }
46
47 //求一次增广路
48 bool BellmanFord(int &flow, double &cost)
49 {
50 for(int i=0;i<n;++i) d[i]=INF;
51 memset(inq,0,sizeof(inq));
52 d[s]=1.0, a[s]=INF, inq[s]=true, p[s]=0;
53 queue<int> Q;
54 Q.push(s);
55 while(!Q.empty())
56 {
57 // cout<<"Q"<<endl;
58 int u=Q.front(); Q.pop();
59 inq[u]=false;
60 for(int i=0;i<G[u].size();++i)
61 {
62 Edge &e=edges[G[u][i]];
63 double tmp=(d[u]*e.cost);
64 tmp=-1*fabs(tmp);
65 if( e.cap>e.flow && d[e.to] > tmp )
66 {
67 d[e.to]=tmp;
68 p[e.to]=G[u][i];
69 a[e.to]= min(a[u],e.cap-e.flow);
70 if(!inq[e.to]){ Q.push(e.to); inq[e.to]=true; }
71 }
72 }
73 }
74 if(fabs(d[t]-INF)<1e3) return false;
75 flow += a[t];
76 for(int i=0;i<a[t];i++) cost*=(d[t]);
77 int u=t;
78 while(u!=s)
79 {
80 edges[p[u]].flow += a[t];
81 edges[p[u]^1].flow -=a[t];
82 u = edges[p[u]].from;
83 }
84 return true;
85 }
86
87 //求出最小费用最大流
88 double Min_cost()
89 {
90 int flow=0;double cost=1.0;
91 while(BellmanFord(flow,cost));
92 return cost;
93 }
94 }MM;
95 int main()
96 {
97 // freopen("data.in","r",stdin);
98 //freopen("data.out","w",stdout);
99 int t;
100 scanf("%d",&t);
101 while(t--){
102 int n,m;
103 scanf("%d%d",&n,&m);
104 MM.init(n+2,0,n+1);
105 int x,y;
106 for(int i=1;i<=n;i++){
107 scanf("%d%d",&x,&y);
108 if(x!=0)
109 MM.AddEdge(0,i,x,1.0);
110 if(y!=0)
111 MM.AddEdge(i,n+1,y,1.0);
112 }
113 int u,v,c;double w;
114 for(int i=1;i<=m;i++){
115 scanf("%d%d%d%lf",&u,&v,&c,&w);
116 //MM.AddEdge(u,v,c,w);
117 if(c>0){
118 MM.AddEdge(u,v,c-1,w-1.0);
119 MM.AddEdge(u,v,1,1.0);
120 }
121 }
122 double res=fabs(MM.Min_cost());
123 //cout<<res<<endl;
124 res=1.0-res;
125 if(res>=1.0) res=1.0;
126 printf("%.2lf\n",res);
127 }
128 return 0;
129 }
HDU–5988-Coding Contest(最小费用最大流变形)的更多相关文章
- HDU 5988 Coding Contest(最小费用最大流变形)
Problem DescriptionA coding contest will be held in this university, in a huge playground. The whole ...
- HDU 5988.Coding Contest 最小费用最大流
Coding Contest Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)To ...
- HDU5988/nowcoder 207G - Coding Contest - [最小费用最大流]
题目链接:https://www.nowcoder.com/acm/contest/207/G 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5988 ...
- hdu 1533 Going Home 最小费用最大流
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1533 On a grid map there are n little men and n house ...
- hdu 3667(拆边+最小费用最大流)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3667 思路:由于花费的计算方法是a*x*x,因此必须拆边,使得最小费用流模板可用,即变成a*x的形式. ...
- hdu 3488(KM算法||最小费用最大流)
Tour Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Total Submis ...
- hdu 3395(KM算法||最小费用最大流(第二种超级巧妙))
Special Fish Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tota ...
- hdu 1533 Going Home 最小费用最大流 入门题
Going Home Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tota ...
- POJ 2195 & HDU 1533 Going Home(最小费用最大流)
这就是一道最小费用最大流问题 最大流就体现到每一个'm'都能找到一个'H',但是要在这个基础上面加一个费用,按照题意费用就是(横坐标之差的绝对值加上纵坐标之差的绝对值) 然后最小费用最大流模板就是再用 ...
随机推荐
- 一个复杂关联的sql
在项目中遇到了一个比较复杂关系的sql,关联关系有些模糊,现在梳理一下 sql如下: SELECT TRAN.TRANS_DATE, TRAN.TRANS_TIME, TRAN.BUSI_TRAC_C ...
- js date对象传参获取特定日期的时间戳
当我们想要通过js获取某一特定时间的时间戳时,会通过给date对象传参再通过getTime函数来获取,传递的参数格式也有不同形式.有些时候,可能会因为自己传入参数的格式不正确而导致date对象inva ...
- dev linechart动态加载数据(像股票一样的波动)
图片地址:https://blog.csdn.net/qq_33459369/article/details/80060196:(盗图) 接下来是封装的代码 #region 动态折线图 public ...
- Install CUDA 6.0 on Ubuntu 14.04 LTS
Ubuntu 14.04 LTS is out, loads of new features have been added. Here are some procedures I followed ...
- Django rest-framework框架-序列化
序列化: 第一版: class RolesView(APIView): def get(self,request,*args,**kwargs): roles = models.Role.object ...
- 初学java2 认识面向对象 以及运算符 输入输出
面向对象 面向对象是一种程序设计思路,在设计一个程序时不需要考虑内部如何实现,只需要想他要实现什么功能 就像在餐馆点菜一样,你不需要知道他应该怎么做,你只需要决定你要吃什么 面向对象三大特征 继承 封 ...
- Linux下定时任务的查看及取消
crontab -l 表示列出所有的定时任务 crontab -r 表示删除用户的定时任务,当执行此命令后,所有用户下面的定时任务会被删除,执行crontab -l后会提示用户:“no crontab ...
- Tomat服务器学习
Tomat服务器学习 使用的是Redhat版本的Tomcat 目录结构 bin:可执行文件 conf:配置文件 lib:tomcat运行时依赖的jar包 logs:日志文件 temp:临时文件 web ...
- express相关操作
1. 安装应用生成器npm install express-generator –g 2. 生成项目Express --view=ejs myapp 3. 进入项目安装依赖包 npm in ...
- vue cli创建脚手架
1.用vscode打开一个文件夹.在菜单栏 点击 查看-集成终端.这里可以用其他的方法比如cmd命令符调开这个界面,但是要用cd 切到要放文件的文件夹下. 2.安装好node.js 和淘宝镜像 3. ...