HDU–5988-Coding Contest(最小费用最大流变形)
Coding Contest
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2653 Accepted Submission(s): 579
Problem Description
A coding contest will be held in this university, in a huge playground. The whole playground would be divided into N blocks, and there would be M directed paths linking these blocks. The i-th path goes from the ui-th block to the vi-th block. Your task is to solve the lunch issue. According to the arrangement, there are si competitors in the i-th block. Limited to the size of table, bi bags of lunch including breads, sausages and milk would be put in the i-th block. As a result, some competitors need to move to another block to access lunch. However, the playground is temporary, as a result there would be so many wires on the path.
For the i-th path, the wires have been stabilized at first and the first competitor who walker through it would not break the wires. Since then, however, when a person go through the i - th path, there is a chance of pi to touch
the wires and affect the whole networks. Moreover, to protect these wires, no more than ci competitors are allowed to walk through the i-th path.
Now you need to find a way for all competitors to get their lunch, and minimize the possibility of network crashing.
Input
The first line of input contains an integer t which is the number of test cases. Then t test cases follow.
For each test case, the first line consists of two integers N (N ≤ 100) and M (M ≤ 5000). Each of the next N lines contains two integers si and bi (si , bi ≤ 200).
Each of the next M lines contains three integers ui , vi and ci(ci ≤ 100) and a float-point number pi(0 < pi < 1).
It is guaranteed that there is at least one way to let every competitor has lunch.
Output
For each turn of each case, output the minimum possibility that the networks would break down. Round it to 2 digits.
Sample Input
1
4 4
2 0
0 3
3 0
0 3
1 2 5 0.5
3 2 5 0.5
1 4 5 0.5
3 4 5 0.5
Sample Output
0.50 思路: 这是一个最小费用最大流的变形题目。 要仔细读懂题目,题目要求的是崩溃的最小可能性。由于崩溃可能是由一条边或多条边一起的,所以正着求崩溃概率很难求,我们反着思考,用1去减每条边都不引起图崩溃的概率即为崩溃的概率。 由于求的是最小,而且边有容量限制,我们很自然的想到了最小费用最大流(对于不崩溃的概率应该是最大费用最大流) 建图时,某个点有人则想s连一条容量为人数的边,有食物则向t连一条容量为是无数的边,其他的边按照题目的数据相连即可,这个很好处理。 还有一个条件是某条路第一遍走的时候是没有花费的。我的处理方法是将一条容量为c,花费为w的边拆成两条边:容量为c-1,花费为w的一条边;容量为1,花费为1.0的一条边(花费为1.0是为了确保不会对最终结果产生影响)。 细节很多,由于概率要想乘所以初始化时要注意,算一条增广路径对总结果的贡献时也要注意是乘方而不是简单的相乘。 代码1:求增广路径时直接求最长路
1 /*
2 * @FileName: D:\代码与算法\2017训练比赛\2016青岛区域赛\g.cpp
3 * @Author: Pic
4 * @Created Time: 2017/10/7 12:46:48
5 */
6 #include <bits/stdc++.h>
7 using namespace std;
8 const double INF = -1*10.0;
9 const int maxn=200+10;
10
11 struct Edge
12 {
13 int from,to,cap,flow;
14 double cost;
15 Edge(){}
16 Edge(int f,int t,int c,int fl,double co):from(f),to(t),cap(c),flow(fl),cost(co){}
17 };
18
19 struct MCMF
20 {
21 int n,m,s,t;
22 vector<Edge> edges;
23 vector<int> G[maxn];
24 bool inq[maxn]; //是否在队列
25 double d[maxn]; //Bellman_ford单源最短路径
26 int p[maxn]; //p[i]表从s到i的最小费用路径上的最后一条弧编号
27 int a[maxn]; //a[i]表示从s到i的最小残量
28
29 //初始化
30 void init(int n,int s,int t)
31 {
32 this->n=n, this->s=s, this->t=t;
33 edges.clear();
34 for(int i=0;i<n;++i) G[i].clear();
35 }
36
37 //添加一条有向边
38 void AddEdge(int from,int to,int cap,double cost)
39 {
40 edges.push_back(Edge(from,to,cap,0,cost));
41 edges.push_back(Edge(to,from,0,0,-cost));
42 m=edges.size();
43 G[from].push_back(m-2);
44 G[to].push_back(m-1);
45 }
46
47 //求一次增广路
48 bool BellmanFord(int &flow, double &cost)
49 {
50 for(int i=0;i<n;++i) d[i]=INF;
51 memset(inq,0,sizeof(inq));
52 d[s]=1.0, a[s]=1e9+30, inq[s]=true, p[s]=0;
53 queue<int> Q;
54 Q.push(s);
55 while(!Q.empty())
56 {
57 //cout<<"Q"<<endl;
58 int u=Q.front(); Q.pop();
59 inq[u]=false;
60 for(int i=0;i<G[u].size();++i)
61 {
62 Edge &e=edges[G[u][i]];
63 double tmp=(d[u]*e.cost);
64 //tmp=-1*fabs(tmp);
65 if( e.cap>e.flow && d[e.to] < tmp )
66 {
67 d[e.to]=tmp;
68 p[e.to]=G[u][i];
69 a[e.to]= min(a[u],e.cap-e.flow);
70 if(!inq[e.to]){ Q.push(e.to); inq[e.to]=true; }
71 }
72 }
73 }
74 //cout<<d[t]<<endl;
75 //if(fabs(d[t]-INF)<1e-3) return false;
76 if(d[t]<0) return false;
77 flow += a[t];
78 for(int i=0;i<a[t];i++) cost*=(d[t]);
79 int u=t;
80 while(u!=s)
81 {
82 edges[p[u]].flow += a[t];
83 edges[p[u]^1].flow -=a[t];
84 u = edges[p[u]].from;
85 }
86 return true;
87 }
88
89 //求出最小费用最大流
90 double Min_cost()
91 {
92 int flow=0;double cost=1.0;
93 while(BellmanFord(flow,cost)) ;
94 return cost;
95 }
96 }MM;
97 int main()
98 {
99 // freopen("data.in","r",stdin);
100 //freopen("data.out","w",stdout);
101 int t;
102 scanf("%d",&t);
103 while(t--){
104 int n,m;
105 scanf("%d%d",&n,&m);
106 MM.init(n+2,0,n+1);
107 int x,y;
108 for(int i=1;i<=n;i++){
109 scanf("%d%d",&x,&y);
110 if(x!=0)
111 MM.AddEdge(0,i,x,1.0);
112 if(y!=0)
113 MM.AddEdge(i,n+1,y,1.0);
114 }
115 int u,v,c;double w;
116 for(int i=1;i<=m;i++){
117 scanf("%d%d%d%lf",&u,&v,&c,&w);
118 //MM.AddEdge(u,v,c,w);
119 if(c>0){
120 MM.AddEdge(u,v,c-1,1.0-w);
121 MM.AddEdge(u,v,1,1.0);
122 }
123 }
124 double res=fabs(MM.Min_cost());
125 //cout<<res<<endl;
126 res=1.0-res;
127 if(res>=1.0) res=1.0;
128 printf("%.2lf\n",res);
129 }
130 return 0;
131 }代码2:花费取负,求最小费用最大流,注意初始化的值
1 /*
2 * @FileName: D:\代码与算法\2017训练比赛\2016青岛区域赛\g.cpp
3 * @Author: Pic
4 * @Created Time: 2017/10/7 12:46:48
5 */
6 #include <bits/stdc++.h>
7 using namespace std;
8 const double INF = 1e8;
9 const int maxn=200+10;
10
11 struct Edge
12 {
13 int from,to,cap,flow;
14 double cost;
15 Edge(){}
16 Edge(int f,int t,int c,int fl,double co):from(f),to(t),cap(c),flow(fl),cost(co){}
17 };
18
19 struct MCMF
20 {
21 int n,m,s,t;
22 vector<Edge> edges;
23 vector<int> G[maxn];
24 bool inq[maxn]; //是否在队列
25 double d[maxn]; //Bellman_ford单源最短路径
26 int p[maxn]; //p[i]表从s到i的最小费用路径上的最后一条弧编号
27 int a[maxn]; //a[i]表示从s到i的最小残量
28
29 //初始化
30 void init(int n,int s,int t)
31 {
32 this->n=n, this->s=s, this->t=t;
33 edges.clear();
34 for(int i=0;i<n;++i) G[i].clear();
35 }
36
37 //添加一条有向边
38 void AddEdge(int from,int to,int cap,double cost)
39 {
40 edges.push_back(Edge(from,to,cap,0,cost));
41 edges.push_back(Edge(to,from,0,0,-cost));
42 m=edges.size();
43 G[from].push_back(m-2);
44 G[to].push_back(m-1);
45 }
46
47 //求一次增广路
48 bool BellmanFord(int &flow, double &cost)
49 {
50 for(int i=0;i<n;++i) d[i]=INF;
51 memset(inq,0,sizeof(inq));
52 d[s]=1.0, a[s]=INF, inq[s]=true, p[s]=0;
53 queue<int> Q;
54 Q.push(s);
55 while(!Q.empty())
56 {
57 // cout<<"Q"<<endl;
58 int u=Q.front(); Q.pop();
59 inq[u]=false;
60 for(int i=0;i<G[u].size();++i)
61 {
62 Edge &e=edges[G[u][i]];
63 double tmp=(d[u]*e.cost);
64 tmp=-1*fabs(tmp);
65 if( e.cap>e.flow && d[e.to] > tmp )
66 {
67 d[e.to]=tmp;
68 p[e.to]=G[u][i];
69 a[e.to]= min(a[u],e.cap-e.flow);
70 if(!inq[e.to]){ Q.push(e.to); inq[e.to]=true; }
71 }
72 }
73 }
74 if(fabs(d[t]-INF)<1e3) return false;
75 flow += a[t];
76 for(int i=0;i<a[t];i++) cost*=(d[t]);
77 int u=t;
78 while(u!=s)
79 {
80 edges[p[u]].flow += a[t];
81 edges[p[u]^1].flow -=a[t];
82 u = edges[p[u]].from;
83 }
84 return true;
85 }
86
87 //求出最小费用最大流
88 double Min_cost()
89 {
90 int flow=0;double cost=1.0;
91 while(BellmanFord(flow,cost));
92 return cost;
93 }
94 }MM;
95 int main()
96 {
97 // freopen("data.in","r",stdin);
98 //freopen("data.out","w",stdout);
99 int t;
100 scanf("%d",&t);
101 while(t--){
102 int n,m;
103 scanf("%d%d",&n,&m);
104 MM.init(n+2,0,n+1);
105 int x,y;
106 for(int i=1;i<=n;i++){
107 scanf("%d%d",&x,&y);
108 if(x!=0)
109 MM.AddEdge(0,i,x,1.0);
110 if(y!=0)
111 MM.AddEdge(i,n+1,y,1.0);
112 }
113 int u,v,c;double w;
114 for(int i=1;i<=m;i++){
115 scanf("%d%d%d%lf",&u,&v,&c,&w);
116 //MM.AddEdge(u,v,c,w);
117 if(c>0){
118 MM.AddEdge(u,v,c-1,w-1.0);
119 MM.AddEdge(u,v,1,1.0);
120 }
121 }
122 double res=fabs(MM.Min_cost());
123 //cout<<res<<endl;
124 res=1.0-res;
125 if(res>=1.0) res=1.0;
126 printf("%.2lf\n",res);
127 }
128 return 0;
129 }
HDU–5988-Coding Contest(最小费用最大流变形)的更多相关文章
- HDU 5988 Coding Contest(最小费用最大流变形)
Problem DescriptionA coding contest will be held in this university, in a huge playground. The whole ...
- HDU 5988.Coding Contest 最小费用最大流
Coding Contest Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)To ...
- HDU5988/nowcoder 207G - Coding Contest - [最小费用最大流]
题目链接:https://www.nowcoder.com/acm/contest/207/G 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5988 ...
- hdu 1533 Going Home 最小费用最大流
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1533 On a grid map there are n little men and n house ...
- hdu 3667(拆边+最小费用最大流)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3667 思路:由于花费的计算方法是a*x*x,因此必须拆边,使得最小费用流模板可用,即变成a*x的形式. ...
- hdu 3488(KM算法||最小费用最大流)
Tour Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Total Submis ...
- hdu 3395(KM算法||最小费用最大流(第二种超级巧妙))
Special Fish Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tota ...
- hdu 1533 Going Home 最小费用最大流 入门题
Going Home Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tota ...
- POJ 2195 & HDU 1533 Going Home(最小费用最大流)
这就是一道最小费用最大流问题 最大流就体现到每一个'm'都能找到一个'H',但是要在这个基础上面加一个费用,按照题意费用就是(横坐标之差的绝对值加上纵坐标之差的绝对值) 然后最小费用最大流模板就是再用 ...
随机推荐
- Callable和Future的区别
Callable 在Java中,创建线程一般有两种方式,一种是继承Thread类,一种是实现Runnable接口.然而,这两种方式的缺点是在线程任务执行结束后,无法获取执行结果.我们一般只能采用共享变 ...
- EFcore的 基础理解<三> 多对多,唯一约束
唯一约束,替代键. modelBuilder.Entity<Car>() .HasAlternateKey(c => new { c.State, c.LicensePlate }) ...
- JS 编程艺术
JS艺术片段剪贴 getFullDate: function (date) { //返回 YYYY年MM月DD日 var year = month = day = ' '; if (isNaN(dat ...
- 13.SpringMVC核心技术-异常处理
常用的SpringMVC异常处理方式主要是三种: 1.使用系统定义好的异常处理器 SimpleMappingExceptionResolver 2.使用自定义异常处理器 3.使用异常处理注解 Si ...
- 【Struts2】防止表单重复提交
一.概述 二.Struts2中解决方案 三.实现步骤 一.概述 regist.jsp----->RegistServlet 表单重复提交 危害: 刷票. 重复注册.带来服务器访问压力(拒绝服务) ...
- windows 10 mysql-8.0.17-winx64的安装
1.官网下载,并解压 https://dev.mysql.com/downloads/mysql/ 下载下来之后是一个zip的压缩包文件:mysql-5.7.26-winx64.zip,然后对这个文件 ...
- Vue介绍:vue导读1
一.什么是vue 二.如何在页面中使用vue 三.vue的挂载点 四.vue的基础指令 一.什么是vue 1.什么是vue vue.js十一个渐进式javascript框架 渐进式:vue从控制页面中 ...
- 2.6. 案例:使用BeautifuSoup4的爬虫
案例:使用BeautifuSoup4的爬虫 我们以腾讯社招页面来做演示:http://hr.tencent.com/position.php?&start=10#a 使用BeautifuSou ...
- (a ==1 && a== 2 && a==3) 有可能是 true 吗?
今天看到这个题目,感到很有意思,查找了些资料,各位牛人果然有高招解决: 方法一: var a = { i: 1, toString: function () { return a.i++; } } i ...
- zznu-2183: 口袋魔方
大致题意: 题目描述 口袋魔方又称为迷你魔方,通俗的来讲就是二阶魔方,只有八个角块的魔方,如图所示. 二阶魔方8个角块的位置均可进行任意互换(!种状态),如果以一个角块不动作为参考角块,其他7个 角块 ...
