Coding Contest

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2653    Accepted Submission(s): 579

Problem Description

A coding contest will be held in this university, in a huge playground. The whole playground would be divided into N blocks, and there would be M directed paths linking these blocks. The i-th path goes from the ui-th block to the vi-th block. Your task is to solve the lunch issue. According to the arrangement, there are si competitors in the i-th block. Limited to the size of table, bi bags of lunch including breads, sausages and milk would be put in the i-th block. As a result, some competitors need to move to another block to access lunch. However, the playground is temporary, as a result there would be so many wires on the path.
For the i-th path, the wires have been stabilized at first and the first competitor who walker through it would not break the wires. Since then, however, when a person go through the i - th path, there is a chance of pi to touch
the wires and affect the whole networks. Moreover, to protect these wires, no more than ci competitors are allowed to walk through the i-th path.
Now you need to find a way for all competitors to get their lunch, and minimize the possibility of network crashing.

Input

The first line of input contains an integer t which is the number of test cases. Then t test cases follow.
For each test case, the first line consists of two integers N (N ≤ 100) and M (M ≤ 5000). Each of the next N lines contains two integers si and bi (si , bi ≤ 200).
Each of the next M lines contains three integers ui , vi and ci(ci ≤ 100) and a float-point number pi(0 < pi < 1).
It is guaranteed that there is at least one way to let every competitor has lunch.

Output

For each turn of each case, output the minimum possibility that the networks would break down. Round it to 2 digits.

Sample Input


1
4 4
2 0
0 3
3 0
0 3
1 2 5 0.5
3 2 5 0.5
1 4 5 0.5
3 4 5 0.5

Sample Output


0.50

思路:

这是一个最小费用最大流的变形题目。

要仔细读懂题目,题目要求的是崩溃的最小可能性。由于崩溃可能是由一条边或多条边一起的,所以正着求崩溃概率很难求,我们反着思考,用1去减每条边都不引起图崩溃的概率即为崩溃的概率。

由于求的是最小,而且边有容量限制,我们很自然的想到了最小费用最大流(对于不崩溃的概率应该是最大费用最大流)

建图时,某个点有人则想s连一条容量为人数的边,有食物则向t连一条容量为是无数的边,其他的边按照题目的数据相连即可,这个很好处理。

还有一个条件是某条路第一遍走的时候是没有花费的。我的处理方法是将一条容量为c,花费为w的边拆成两条边:容量为c-1,花费为w的一条边;容量为1,花费为1.0的一条边(花费为1.0是为了确保不会对最终结果产生影响)。

细节很多,由于概率要想乘所以初始化时要注意,算一条增广路径对总结果的贡献时也要注意是乘方而不是简单的相乘。

代码1:求增广路径时直接求最长路
  1 /*
2 * @FileName: D:\代码与算法\2017训练比赛\2016青岛区域赛\g.cpp
3 * @Author: Pic
4 * @Created Time: 2017/10/7 12:46:48
5 */
6 #include <bits/stdc++.h>
7 using namespace std;
8 const double INF = -1*10.0;
9 const int maxn=200+10;
10
11 struct Edge
12 {
13 int from,to,cap,flow;
14 double cost;
15 Edge(){}
16 Edge(int f,int t,int c,int fl,double co):from(f),to(t),cap(c),flow(fl),cost(co){}
17 };
18
19 struct MCMF
20 {
21 int n,m,s,t;
22 vector<Edge> edges;
23 vector<int> G[maxn];
24 bool inq[maxn]; //是否在队列
25 double d[maxn]; //Bellman_ford单源最短路径
26 int p[maxn]; //p[i]表从s到i的最小费用路径上的最后一条弧编号
27 int a[maxn]; //a[i]表示从s到i的最小残量
28
29 //初始化
30 void init(int n,int s,int t)
31 {
32 this->n=n, this->s=s, this->t=t;
33 edges.clear();
34 for(int i=0;i<n;++i) G[i].clear();
35 }
36
37 //添加一条有向边
38 void AddEdge(int from,int to,int cap,double cost)
39 {
40 edges.push_back(Edge(from,to,cap,0,cost));
41 edges.push_back(Edge(to,from,0,0,-cost));
42 m=edges.size();
43 G[from].push_back(m-2);
44 G[to].push_back(m-1);
45 }
46
47 //求一次增广路
48 bool BellmanFord(int &flow, double &cost)
49 {
50 for(int i=0;i<n;++i) d[i]=INF;
51 memset(inq,0,sizeof(inq));
52 d[s]=1.0, a[s]=1e9+30, inq[s]=true, p[s]=0;
53 queue<int> Q;
54 Q.push(s);
55 while(!Q.empty())
56 {
57 //cout<<"Q"<<endl;
58 int u=Q.front(); Q.pop();
59 inq[u]=false;
60 for(int i=0;i<G[u].size();++i)
61 {
62 Edge &e=edges[G[u][i]];
63 double tmp=(d[u]*e.cost);
64 //tmp=-1*fabs(tmp);
65 if( e.cap>e.flow && d[e.to] < tmp )
66 {
67 d[e.to]=tmp;
68 p[e.to]=G[u][i];
69 a[e.to]= min(a[u],e.cap-e.flow);
70 if(!inq[e.to]){ Q.push(e.to); inq[e.to]=true; }
71 }
72 }
73 }
74 //cout<<d[t]<<endl;
75 //if(fabs(d[t]-INF)<1e-3) return false;
76 if(d[t]<0) return false;
77 flow += a[t];
78 for(int i=0;i<a[t];i++) cost*=(d[t]);
79 int u=t;
80 while(u!=s)
81 {
82 edges[p[u]].flow += a[t];
83 edges[p[u]^1].flow -=a[t];
84 u = edges[p[u]].from;
85 }
86 return true;
87 }
88
89 //求出最小费用最大流
90 double Min_cost()
91 {
92 int flow=0;double cost=1.0;
93 while(BellmanFord(flow,cost)) ;
94 return cost;
95 }
96 }MM;
97 int main()
98 {
99 // freopen("data.in","r",stdin);
100 //freopen("data.out","w",stdout);
101 int t;
102 scanf("%d",&t);
103 while(t--){
104 int n,m;
105 scanf("%d%d",&n,&m);
106 MM.init(n+2,0,n+1);
107 int x,y;
108 for(int i=1;i<=n;i++){
109 scanf("%d%d",&x,&y);
110 if(x!=0)
111 MM.AddEdge(0,i,x,1.0);
112 if(y!=0)
113 MM.AddEdge(i,n+1,y,1.0);
114 }
115 int u,v,c;double w;
116 for(int i=1;i<=m;i++){
117 scanf("%d%d%d%lf",&u,&v,&c,&w);
118 //MM.AddEdge(u,v,c,w);
119 if(c>0){
120 MM.AddEdge(u,v,c-1,1.0-w);
121 MM.AddEdge(u,v,1,1.0);
122 }
123 }
124 double res=fabs(MM.Min_cost());
125 //cout<<res<<endl;
126 res=1.0-res;
127 if(res>=1.0) res=1.0;
128 printf("%.2lf\n",res);
129 }
130 return 0;
131 }

代码2:花费取负,求最小费用最大流,注意初始化的值

  1 /*
2 * @FileName: D:\代码与算法\2017训练比赛\2016青岛区域赛\g.cpp
3 * @Author: Pic
4 * @Created Time: 2017/10/7 12:46:48
5 */
6 #include <bits/stdc++.h>
7 using namespace std;
8 const double INF = 1e8;
9 const int maxn=200+10;
10
11 struct Edge
12 {
13 int from,to,cap,flow;
14 double cost;
15 Edge(){}
16 Edge(int f,int t,int c,int fl,double co):from(f),to(t),cap(c),flow(fl),cost(co){}
17 };
18
19 struct MCMF
20 {
21 int n,m,s,t;
22 vector<Edge> edges;
23 vector<int> G[maxn];
24 bool inq[maxn]; //是否在队列
25 double d[maxn]; //Bellman_ford单源最短路径
26 int p[maxn]; //p[i]表从s到i的最小费用路径上的最后一条弧编号
27 int a[maxn]; //a[i]表示从s到i的最小残量
28
29 //初始化
30 void init(int n,int s,int t)
31 {
32 this->n=n, this->s=s, this->t=t;
33 edges.clear();
34 for(int i=0;i<n;++i) G[i].clear();
35 }
36
37 //添加一条有向边
38 void AddEdge(int from,int to,int cap,double cost)
39 {
40 edges.push_back(Edge(from,to,cap,0,cost));
41 edges.push_back(Edge(to,from,0,0,-cost));
42 m=edges.size();
43 G[from].push_back(m-2);
44 G[to].push_back(m-1);
45 }
46
47 //求一次增广路
48 bool BellmanFord(int &flow, double &cost)
49 {
50 for(int i=0;i<n;++i) d[i]=INF;
51 memset(inq,0,sizeof(inq));
52 d[s]=1.0, a[s]=INF, inq[s]=true, p[s]=0;
53 queue<int> Q;
54 Q.push(s);
55 while(!Q.empty())
56 {
57 // cout<<"Q"<<endl;
58 int u=Q.front(); Q.pop();
59 inq[u]=false;
60 for(int i=0;i<G[u].size();++i)
61 {
62 Edge &e=edges[G[u][i]];
63 double tmp=(d[u]*e.cost);
64 tmp=-1*fabs(tmp);
65 if( e.cap>e.flow && d[e.to] > tmp )
66 {
67 d[e.to]=tmp;
68 p[e.to]=G[u][i];
69 a[e.to]= min(a[u],e.cap-e.flow);
70 if(!inq[e.to]){ Q.push(e.to); inq[e.to]=true; }
71 }
72 }
73 }
74 if(fabs(d[t]-INF)<1e3) return false;
75 flow += a[t];
76 for(int i=0;i<a[t];i++) cost*=(d[t]);
77 int u=t;
78 while(u!=s)
79 {
80 edges[p[u]].flow += a[t];
81 edges[p[u]^1].flow -=a[t];
82 u = edges[p[u]].from;
83 }
84 return true;
85 }
86
87 //求出最小费用最大流
88 double Min_cost()
89 {
90 int flow=0;double cost=1.0;
91 while(BellmanFord(flow,cost));
92 return cost;
93 }
94 }MM;
95 int main()
96 {
97 // freopen("data.in","r",stdin);
98 //freopen("data.out","w",stdout);
99 int t;
100 scanf("%d",&t);
101 while(t--){
102 int n,m;
103 scanf("%d%d",&n,&m);
104 MM.init(n+2,0,n+1);
105 int x,y;
106 for(int i=1;i<=n;i++){
107 scanf("%d%d",&x,&y);
108 if(x!=0)
109 MM.AddEdge(0,i,x,1.0);
110 if(y!=0)
111 MM.AddEdge(i,n+1,y,1.0);
112 }
113 int u,v,c;double w;
114 for(int i=1;i<=m;i++){
115 scanf("%d%d%d%lf",&u,&v,&c,&w);
116 //MM.AddEdge(u,v,c,w);
117 if(c>0){
118 MM.AddEdge(u,v,c-1,w-1.0);
119 MM.AddEdge(u,v,1,1.0);
120 }
121 }
122 double res=fabs(MM.Min_cost());
123 //cout<<res<<endl;
124 res=1.0-res;
125 if(res>=1.0) res=1.0;
126 printf("%.2lf\n",res);
127 }
128 return 0;
129 }


HDU–5988-Coding Contest(最小费用最大流变形)的更多相关文章

  1. HDU 5988 Coding Contest(最小费用最大流变形)

    Problem DescriptionA coding contest will be held in this university, in a huge playground. The whole ...

  2. HDU 5988.Coding Contest 最小费用最大流

    Coding Contest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  3. HDU5988/nowcoder 207G - Coding Contest - [最小费用最大流]

    题目链接:https://www.nowcoder.com/acm/contest/207/G 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5988 ...

  4. hdu 1533 Going Home 最小费用最大流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1533 On a grid map there are n little men and n house ...

  5. hdu 3667(拆边+最小费用最大流)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3667 思路:由于花费的计算方法是a*x*x,因此必须拆边,使得最小费用流模板可用,即变成a*x的形式. ...

  6. hdu 3488(KM算法||最小费用最大流)

    Tour Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submis ...

  7. hdu 3395(KM算法||最小费用最大流(第二种超级巧妙))

    Special Fish Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  8. hdu 1533 Going Home 最小费用最大流 入门题

    Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tota ...

  9. POJ 2195 & HDU 1533 Going Home(最小费用最大流)

    这就是一道最小费用最大流问题 最大流就体现到每一个'm'都能找到一个'H',但是要在这个基础上面加一个费用,按照题意费用就是(横坐标之差的绝对值加上纵坐标之差的绝对值) 然后最小费用最大流模板就是再用 ...

随机推荐

  1. hdu 6082 2017百度之星资格赛

    #include<iostream> #include<cstring> #include<cstdio> #include<cmath> #inclu ...

  2. 轻松搭建CAS 5.x系列(2)-搭建HTTPS的SSO SERVER端

    概要说明 CAS要求,必须使用HTTPS的服务,否则就只等实现登录,无法实现单点登录.科普下HTTPS,网站有HTTP和HTTPS两种协议.HTTP是浏览器到网站之间是明文传输,比如你输入帐号名和密码 ...

  3. React virtual DOM explained in simple English/简单语言解释React的虚拟DOM

    初学React,其中一个很重要的概念是虚拟DOM,看了一篇文章,顺带翻译一下. If you are using React or learning React, you must have hear ...

  4. javabean转成json字符首字母大写

    今天写接口的时候有个需求将接口返回的json字符串首字母大写:{"SN":"","Result":""}格式, 只需要在 ...

  5. C# list to dictionary

    示例: 新建一个类: public class Lang { public string En; public string Ch; } 实例化并转为字典: List<Lang> lang ...

  6. 客户想要的 vs 客户实际预算:漫画解读软件开发模式 ​​​​

    转自:http://blog.jobbole.com/113230/ 1913 年,美利坚工业之神——亨利福特,发明了世界上第一条流水线,汽车工业从此进入了大规模生产的时代.丰田公司提出的丰田生产系统 ...

  7. mysql管理工具之pt

    之前我一直用Seconds_behind_master来衡量主从的延迟,今天看到文档,才觉得多么不可靠!以下是官方文档的描述: In essence, this field measures the ...

  8. SIFT算法相关资料

    SIFT算法相关资料 一.SIFT算法的教程.源码及应用软件1.ubc:DAVID LOWE---SIFT算法的创始人,两篇巨经典经典的文章http://www.cs.ubc.ca/~lowe/ 2. ...

  9. Codeforces 845G Shortest Path Problem?

    http://codeforces.com/problemset/problem/845/G 从顶点1dfs全图,遇到环则增加一种备选方案,环上的环不需要走到前一个环上作为条件,因为走完第二个环可以从 ...

  10. 前端基础(三):JavaScript

    JavaScript概述 JavaScript的历史 1992年Nombas开发出C-minus-minus(C--)的嵌入式脚本语言(最初绑定在CEnvi软件中),后将其改名ScriptEase(客 ...