Contest Info


Practice Link

Solved A B C D E F G H
6/8 O O Ø O O Ø - -
  • O 在比赛中通过
  • Ø 赛后通过
  • ! 尝试了但是失败了
  • - 没有尝试

Solutions


A. XORinacci

题意:
\(f(0) = 1, f(1) = b, f(n) = f(n - 1) \oplus f(n - 2)\),求\(f(n)\)。

思路:
循环节为\(3\)。

B. Uniqueness

题意:
给出一个序列\(a_i\),可以删去连续的一段,使得剩下的数是互不相同的。
求删除的那一段的最小长度。

思路:
枚举左端点,那么一个右端点可行,当且仅当左端点左边的数是互不相同的,右端点右边的数是互不相同的,并且右端点右边的数中没有左端点左边的数。

  • 左端点左边的数是互不相同的,右端点右边的数是互不相同的

    • 这两个条件可以\(O(n)\)预处理。
  • 右端点右边的数中没有左端点左边的数。
    • 这个条件可以维护左端点的数中最后一次出现的位置的最大值,那么右端点比这个最大值还大即可。

C. Magic Grid

题意:
构造一个\(n \cdot n\)的矩阵,里面的数为\([0, n^2 - 1]\)的一个排列。
要求每一行以及每一列的异或和相同。
\(n = 4k\).

思路:
对于\(4\)的情况这样构造:

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

发现每一行每一列都是\(0\)。
那么对于\(n = 4k\)的情况,直接划分成若干个\(4 \cdot 4\)的小矩形,这样仿照的画葫芦即可。

D. Restore Permutation

题意:
有一个排列\(p_i\),现在告诉你\(s_i\):
\[
\begin{eqnarray*}
s_i = \sum\limits_{p_j < p_i} p_j
\end{eqnarray*}
\]
要求还原出\(p_i\)。

思路:
显然一个合法的\(s_i\)的序列唯一对应一个\(p_i\)序列,那么我们从最后一个数考虑。
假设最后一个数为\(p_n\),那么\(s_n = p_n(p_n - 1) / 2\)。
其实本质就是小于\(p_n\)的数都在它前面,他们的和构成了\(s_n\)。
那么确定了最后一个数,那么依次倒着确定\(s_{n - 1}, s_{n - 2}, \cdots\)。
用线段树维护还有哪些数没有出现,以及他们的和。
对于每个\(s_i\),在线段树上二分即可。

E. Let Them Slide

题意:
有一个\(n \cdot w\)的矩形,每一行有若干个数,并且每一行的数是可以整体移动的,像这样:

那么现在询问,对于每一列,下面每一行的数如何移动,使得该列的数的和最大,如果没有数那么就是\(0\)。
每一列的询问独立。

思路:
每一行考虑,考虑这一行的哪些数会对哪些列产生贡献。
显然这个每个数产生贡献的范围是连续的,那么用栈贪心维护一下范围即可。

F. Bits And Pieces

题意:
给出一个序列\(a_i\),询问\(a_i \;|\; (a_j \& a_k)\)这个式子的最大值,其中\(i < j < k\)

思路:
考虑固定\(a_i\),然后我们只需要关心\(a_i\)那些二进制位上为\(0\)的位,从高位到低位确定。
比如说对于第\(x\)位,那么我们相当于固定了一个前缀,去找\(i < j < k\)是否存在一个\(a_j\)以及一个\(a_k\),它们都有这样的前缀。
那么直接枚举子集标记前缀即可。 但是这样复杂度不对。
我们可以倒着来,因为我们发现对于一个\((j, k)\),那么肯定希望\(j, k\)越大越好,那么倒着标记即可,这样标记过了肯定不用再标记了,因为被标记过说明下标肯定大于等于当前的下标。
但是要注意下标等于的情况

Manthan, Codefest 19的更多相关文章

  1. Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)-D. Restore Permutation-构造+树状数组

    Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)-D. Restore Permutation-构造+树状数组 [Pro ...

  2. Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)-C. Magic Grid-构造

    Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)-C. Magic Grid-构造 [Problem Descripti ...

  3. Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)-E. Let Them Slide-思维+数据结构

    Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)-E. Let Them Slide-思维+数据结构 [Problem ...

  4. Manthan, Codefest 19(Div. 1 + Div. 2)

    传送门 A. XORinacci 签到. Code /* * Author: heyuhhh * Created Time: 2020/2/26 9:26:33 */ #include <ios ...

  5. Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2) F. Bits And Pieces sosdp

    F. Bits And Pieces 题面 You are given an array

  6. Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2) G. Polygons 数论

    G. Polygons Description You are given two integers

  7. Manthan Codefest 19 题解

    这套题还是有点质量的吧 -- 题目链接 A. XORinacci 傻叉签到题,因为异或的性质所以这个序列的循环节长度只有 \(3\) -- 查看代码 B. Uniqueness 因为序列长度乃至数的种 ...

  8. Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2) (1208F,1208G,1208H)

    1208 F 大意:  给定序列$a$, 求$\text{$a_i$|$a_j$&$a_k$}(i<j<k)$的最大值 枚举$i$, 从高位到低位贪心, 那么问题就转化为给定$x$ ...

  9. RMQ+差分处理(Let Them Slide)Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)

    题意:https://codeforc.es/contest/1208/problem/E 现有n行w列的墙,每行有一排连续方块,一排方块可以左右连续滑动,且每个方块都有一个价值,第i 列的价值定义为 ...

随机推荐

  1. interface Part1(接口详解)

    1. 在日常生活中,手机.笔记本电脑.平板电脑等电子产品提供了不同类型的接口用于充电或者连接不同的设备. 不同类型接口的标准不一样,例如电压.尺寸等. 2. 在C#语言中,接口也会定义一种标准,如果需 ...

  2. centos7上使用git clone出现问题

    centos 7  git clone时出现不支持协议版本的问题 unable to access 'https://github.com/baloonwj/TeamTalk.git/': Peer ...

  3. J.U.C之AQS:阻塞和唤醒线程

    此篇博客所有源码均来自JDK 1.8 在线程获取同步状态时如果获取失败,则加入CLH同步队列,通过通过自旋的方式不断获取同步状态,但是在自旋的过程中则需要判断当前线程是否需要阻塞,其主要方法在acqu ...

  4. laravel 中将一对多关联查询的结果去重处理

    先交代下数据表结构 主表(订单表)order数据 ord_id order_sn 1 EX2019100123458 其中主键为order_id(订单id) 子表(门票表)order_item数据 o ...

  5. 关于Vue中,$this.router.push到当前页面,只是传入参数不同,页面不刷新的问题解决

    在页面的watch中,监听$router的变化 watch: { $route (to, from) { this.$router.go(0) } } 其中this.$router.go(0)为刷新页 ...

  6. python day1 python介绍,安装及运算符

    目录 python day1 1. 不同编程语言的对比 2. 为什么学python? 3. python的种类 4. python的安装(windows系统) 5. 导入模块或包 6. pyc文件 7 ...

  7. dao 接口定义了一个方法,报错 The method xxx is undefined for the type xxx;

    转自:https://blog.csdn.net/panshoujia/article/details/78203837 持久层(DAO层)下的一个接口 ,eclipse报了一个The method ...

  8. Privacy Description

    This application respects and protects the privacy of all users who use the service. In order to pro ...

  9. MySQL常见问题集锦及注意事项

    一.表设计上的坑 1.字段设计 1.1 字段类型设计 尽量使用整型表示字符串: `INET_ATON(str)`,address to number `INET_NTOA(number)`,numbe ...

  10. javascript_13-函数是一种数据类型

    函数是一种数据类型 函数是一种数据类型 function var num =60; // 1 函数是一种数据类型 function var myFun = function(){ console.lo ...