1064 Complete Binary Search Tree (30 分)

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

  • The left subtree of a node contains only nodes with keys less than the node's key.
  • The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
  • Both the left and right subtrees must also be binary search trees.

A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.

Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.

Output Specification:

For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

Sample Input:

10
1 2 3 4 5 6 7 8 9 0

Sample Output:

6 3 8 1 5 7 9 0 2 4

重点在递归的过程建树

详见代码:

#include <iostream>
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int n;
int a[1005];
int cnt[12]={-1,1,3,7,15,31,63,127,255,511,1023};
struct node
{
int v;
node *left=NULL,*right=NULL;
};
int mypow(int a,int b)
{
int res=1;
while(b--)res*=a;
return res;
}
node* build(int l,int r,int num)
{
if(l>r){return NULL;}
if(l==r)
{
node *tt=new node();tt->v=a[l];
return tt;
}
if(num<=0)return NULL;
node *thi;
int k1=0;
while(cnt[k1+1]<num)k1++;
int k2=k1+1;
int rr=num-(cnt[k1]);
int tmp=mypow(2,k2-2);
if(rr>=tmp)
{
int lnum=cnt[k1];
int rnum=num-lnum-1;
int id=l+lnum;
thi=new node();
thi->v=a[id];
thi->left=build(l,id-1,lnum);
thi->right=build(id+1,r,rnum);
}
else {
int lnum=num-1-cnt[k1-1];
int rnum=cnt[k1-1];
int id=l+lnum;
thi=new node();thi->v=a[id];
thi->left=build(l,id-1,lnum);
thi->right=build(id+1,r,rnum);
}
return thi;
}
int main()
{
//freopen("in.txt","r",stdin);
cin>>n;
for(int i=1;i<=n;i++)cin>>a[i];
sort(a+1,a+1+n);
int l=1;int r=n;
node *head=build(l,r,n);
queue< node* >q;
while(!q.empty())q.pop();
q.push(head);
vector<int>ans;ans.clear();
node *now;
while(!q.empty())
{
now=q.front();q.pop();
ans.push_back(now->v);
if(now->left!=NULL)q.push(now->left);
if(now->right!=NULL)q.push(now->right);
}
for(int i=0;i<ans.size();i++)
{
cout<<ans[i];if(i!=ans.size()-1)cout<<" ";
}
cout<<endl;
return 0;
}

pat 甲级 1064 ( Complete Binary Search Tree ) (数据结构)的更多相关文章

  1. pat 甲级 1064. Complete Binary Search Tree (30)

    1064. Complete Binary Search Tree (30) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHE ...

  2. PAT 甲级 1064 Complete Binary Search Tree (30 分)(不会做,重点复习,模拟中序遍历)

    1064 Complete Binary Search Tree (30 分)   A Binary Search Tree (BST) is recursively defined as a bin ...

  3. PAT 甲级 1064 Complete Binary Search Tree

    https://pintia.cn/problem-sets/994805342720868352/problems/994805407749357568 A Binary Search Tree ( ...

  4. PAT甲级——A1064 Complete Binary Search Tree

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...

  5. PAT Advanced 1064 Complete Binary Search Tree (30) [⼆叉查找树BST]

    题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...

  6. PAT甲级:1064 Complete Binary Search Tree (30分)

    PAT甲级:1064 Complete Binary Search Tree (30分) 题干 A Binary Search Tree (BST) is recursively defined as ...

  7. PAT题库-1064. Complete Binary Search Tree (30)

    1064. Complete Binary Search Tree (30) 时间限制 100 ms 内存限制 32000 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHE ...

  8. PAT 1064 Complete Binary Search Tree[二叉树][难]

    1064 Complete Binary Search Tree (30)(30 分) A Binary Search Tree (BST) is recursively defined as a b ...

  9. 1064. Complete Binary Search Tree (30)【二叉树】——PAT (Advanced Level) Practise

    题目信息 1064. Complete Binary Search Tree (30) 时间限制100 ms 内存限制65536 kB 代码长度限制16000 B A Binary Search Tr ...

随机推荐

  1. TiDB部分

    TiDB部分 https://blog.csdn.net/D_Guco/article/details/80641236 https://www.v2ex.com/t/508094 https://u ...

  2. SAS学习笔记31 SAS随机分组方法及实现

    随机分组方法包括: 简单随机化(simple randomization) 区组随机化(block randomization) 分层随机化(stratified randomization) 分层区 ...

  3. qt-博客

    将QQ中的图文聊天内容显示到Qt界面: http://www.qter.org/portal.php?mod=view&aid=12

  4. 阿里云ecs不同网段内网互通

    建立ClassicLink连接 官方文档:https://help.aliyun.com/document_detail/65413.html?spm=a2c4g.11186623.2.12.16c9 ...

  5. 浅谈C++继承

    C++中的继承 1.继承概念及定义:     概念:是面向对象程序设计使代码可以复用的最重要的手段-----继承是类设计层次的复用     定义:            父类->基类:子类-&g ...

  6. 简单标签(SimpleTag) 学习

    一.由于传统标签使用三个标签接口来完成不同的功能,显得过于繁琐,不利于标签技术的推广, SUN公司为降低标签技术的学习难度,在JSP 2.0中定义了一个更为简单.便于编写和调用的SimpleTag接口 ...

  7. Java 之 JDK9 对集合添加的优化

    通常,在代码中创建一个集合(例如,List 或 Set ),并直接用一些元素填充它. 实例化集合,几个 add方法调用,使得代码重复. Java 9,添加了几种集合工厂方法,更方便创建少量元素的集合. ...

  8. Forms Process (FRMWEB) Consumes 100% of CPU in Oracle Applications R12 (文档 ID 745711.1)

    https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=283767243216583&id=745711.1& ...

  9. ASE19团队项目 beta阶段 model组 scrum5 记录

    本次会议于12月6日,19时30分在微软北京西二号楼sky garden召开,持续20分钟. 与会人员:Jiyan He, Lei Chai, Linfeng Qi, Xueqing Wu, Kun ...

  10. C#当中的BeginInvoke和EndInvoke

    我们已经知道 C#当中 存在async/await .BackGroudWorker类以及TPL(任务并行库).当然C#还有一些旧的模式来支持异步编程.参考<C#图解教程>  1. Beg ...