Noip2003 提高组 神经网络
神经网络
题目背景
人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别、函数逼近及贷款风险评估等诸多领域有广泛的应用。对神经网络的研究一直是当今的热门方向,兰兰同学在自学了一本神经网络的入门书籍后,提出了一个简化模型,他希望你能帮助他用程序检验这个神经网络模型的实用性。
题目描述
在兰兰的模型中,神经网络就是一张有向图,图中的节点称为神经元,而且两个神经元之间至多有一条边相连,下图是一个神经元的例子:

神经元〔编号为1)
图中,X1―X3是信息输入渠道,Y1-Y2是信息输出渠道,C1表示神经元目前的状态,Ui是阈值,可视为神经元的一个内在参数。
神经元按一定的顺序排列,构成整个神经网络。在兰兰的模型之中,神经网络中的神经无分为几层;称为输入层、输出层,和若干个中间层。每层神经元只向下一层的神经元输出信息,只从上一层神经元接受信息。下图是一个简单的三层神经网络的例子。

兰兰规定,Ci服从公式:(其中n是网络中所有神经元的数目)

公式中的Wji(可能为负值)表示连接j号神经元和 i号神经元的边的权值。当 Ci大于0时,该神经元处于兴奋状态,否则就处于平静状态。当神经元处于兴奋状态时,下一秒它会向其他神经元传送信号,信号的强度为Ci。
如此.在输入层神经元被激发之后,整个网络系统就在信息传输的推动下进行运作。现在,给定一个神经网络,及当前输入层神经元的状态(Ci),要求你的程序运算出最后网络输出层的状态。
输入输出格式
输入格式:
输入文件第一行是两个整数n(1≤n≤100)和p。接下来n行,每行两个整数,第i+1行是神经元i最初状态和其阈值(Ui),非输入层的神经元开始时状态必然为0。再下面P行,每行由两个整数i,j及一个整数Wij,表示连接神经元i、j的边权值为Wij。
输出格式:
输出文件包含若干行,每行有两个整数,分别对应一个神经元的编号,及其最后的状态,两个整数间以空格分隔。仅输出最后状态大于零的输出层神经元状态,并且按照编号由小到大顺序输出!
若输出层的神经元最后状态均为 0,则输出 NULL。
输入输出样例
5 6
1 0
1 0
0 1
0 1
0 1
1 3 1
1 4 1
1 5 1
2 3 1
2 4 1
2 5 1
3 1
4 1
5 1
思路:
拓扑排序
坑点:
①如果是输入、输出层,均不需要减去ui
②最后输出的是输出层,即出度为0的点
上代码:
#include <iostream>
#include <cstdio>
using namespace std; const int M = ;
int n,p;
int a[M],b[M],ru[M],chu[M];
bool flag,vis[M]; struct node {
int next,to,w;
}e[M<<];
int top,head[M];
void add(int u,int v,int w) {
top++;
e[top].to=v;
e[top].w=w;
e[top].next=head[u];
head[u]=top;
} void dfs(int u) {
for(int i=head[u],v,w; i; i=e[i].next) {
v=e[i].to,w=e[i].w;
a[v]+=w*a[u];
ru[v]--;
if(!ru[v] && a[v]-b[v]>) a[v]-=b[v],dfs(v);
}
} int main() {
scanf("%d%d",&n,&p);
for(int i=,x; i<=n; i++) {
scanf("%d%d",&a[i],&b[i]);
if(a[i]>) vis[i]=true;
}
for(int i=,u,v,w; i<=p; i++) {
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
ru[v]++;
chu[u]++;
}
for(int i=; i<=n; i++)
if(vis[i])
dfs(i);
for(int i=; i<=n; i++)
if(chu[i]== && a[i]>) {
printf("%d %d\n",i,a[i]);
flag=true;
}
if(!flag) printf("NULL");
return ;
}
Noip2003 提高组 神经网络的更多相关文章
- 题解【洛谷P1038/CJOJ1707】[NOIP2003提高组]神经网络
[NOIP2003]神经网络 Description 问题背景:人工神经网络( Artificial Neural Network )是一种新兴的具有自我学习能力的计算系统,在模式识别.函数逼近及贷款 ...
- [NOIp2003提高组]神经网络
OJ题号:洛谷1038 思路:拓扑排序,注意细节.1.题目中求和运算$C_i=\displaystyle{\sum_{(j,i)\in E}W_{ji}C_j-U_i}$中$U_i$在求和运算外,只要 ...
- [NOIP2003] 提高组 洛谷P1038 神经网络
题目背景 人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别.函数逼近及贷款风险评估等诸多领域有广泛的应用.对神经网络的研究一直是当今 ...
- noip2003提高组题解
这一年的前三题虽然难度不高,但是第二题极为繁琐,想在考场上用较短的时间拿到第二题的分数难上加难.所以必须要调整策略,争取拿其他三题的分数.第四题是比较普通的搜索题,分数比较好拿,但是很容易想成树形DP ...
- 【NOIP2003提高组】加分二叉树
https://www.luogu.org/problem/show?pid=1040 令f(i,j)表示[i,j]的二叉树中最高的分数.枚举k为根,状转方程:f(i,j)=max{f(i,k-1)* ...
- [NOIP2003] 提高组 洛谷P1039 侦探推理
题目描述 明明同学最近迷上了侦探漫画<柯南>并沉醉于推理游戏之中,于是他召集了一群同学玩推理游戏.游戏的内容是这样的,明明的同学们先商量好由其中的一个人充当罪犯(在明明不知情的情况下),明 ...
- [NOIP2003] 提高组 洛谷P1041 传染病控制
题目背景 近来,一种新的传染病肆虐全球.蓬莱国也发现了零星感染者,为防止该病在蓬莱国大范围流行,该国政府决定不惜一切代价控制传染病的蔓延.不幸的是,由于人们尚未完全认识这种传染病,难以准确判别病毒携带 ...
- [NOIP2003] 提高组 洛谷P1040 加分二叉树
题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都 ...
- [NOIP2003提高组]侦探推理
题目:洛谷P1039.Vijos P1106.codevs1089. 题目大意:给你一系列证词,要你求出谁是凶手.具体题目见原题. 解题思路:我们枚举犯人和星期,一个一个进行判断.如果成功则记录答案, ...
随机推荐
- harbor关联k8s
第一步 在harbor上创建用户,项目,将用户添加到对应项目中,并赋予用户项目管理者或者开发人员权限,使其对镜像仓库有读写权限. 本次部署创建用户liusw,密码Lsw123456,邮箱8730017 ...
- 使用QFileInfo类获取文件信息(文件的所有权和权限检查在默认情况下是被禁用的。要使能这个功能 extern Q_CORE_EXPORT int qt_ntfs_permission_lookup;)
QFileInfo类为我们提供了系统无关的文件信息,包括文件的名字和在文件系统中位置,文件的访问权限,是否是目录或符合链接,等等.并且,通过这个类,可以修改文件的大小和最后修改.读取时间.同时,QFi ...
- 区间第k大问题 权值线段树 hdu 5249
先说下权值线段树的概念吧 权值平均树 就是指区间维护值为这个区间内点出现次数和的线段树 用这个加权线段树 解决第k大问题就很方便了 int query(int l,int r,int rt,int k ...
- (三)引用中央仓库中不存在的jar包
有些jar包有版权oracle.sqlserver等,所以在maven的中央仓库是不提供下载引用的,但是这个jar包我们可以在别的地方下载到电脑,这是我们需要收工安装到本地仓库,然后再引用 A:手工安 ...
- 听课笔记--DP--Authentication Failed
Authentication Failed https://www.codechef.com/problems/AUTHEN/ 从一个长为N+K的由小写字母组成的字符串中删去K个字符, 可以得到多少种 ...
- kong命令(三)route
介绍 route 是一套匹配客户端请求的规则.每个route都会匹配一个service,每个service可定关联多个route. 可以说service:route=1:n.一对多的关系.每个匹配到r ...
- vue的$nextTick使用后的js代码执行顺序问题
一.问题产生背景: 父组件已经获得子组件实例,并能直接触发子组件的方法,在父组件中调用了子组件的两个方法 // 父组件调用子组件,this.picker是获取的子组件整个实例,先调用update,再调 ...
- C++线程同步之原子操作
所谓的原子操作就是指一个线程对于某一个资源做操作的时候能够保证没有其它的线程能够对此资源进行访问. 原子操作仅仅能够解决某一个变量的问题,只能使得一个整型数据做简单算术运算的时候是原子的. 以下案例需 ...
- Linux高级网络设置——给网卡绑定多个IP
假设这样一种场景: 某运营商的Linux服务器上装配了2家互联网公司的Web服务,每个Web服务分配了一个公网IP地址.但是运营商的Linux服务器只有一块网卡.这就需要在一块网卡上绑定多个IP地址. ...
- PyQt5多个GUI界面设计
版权声明:本文为博主原创文章,转载 请注明出处:https://blog.csdn.net/sc2079/article/details/90454379 - 写在前面 本科毕业设计终于告一段落了.特 ...