神奇的思路,还是要学习一个。

题意:给你一个字符串,并定义两个前缀的lcs、两个后缀的lcp,求式子膜\(2^{64}\)的值。

\[\sum_{1\le i<j\le n} lcp(i,j)lcs(i,j)[lcp(i,j)\le k1][lcs(i,j)\le k2]
\]

分析:

对于一对存在贡献的\(<i,j>\),咱将它们的lcs、lcp拼起来,可知

\[s[i-lcs(i,j)+1,i+lcp(i,j)-1]=s[j-lcs(i,j)+1,j+lcp(i,j)-1]\\
s[i-lcs(i,j)]\not=s[j-lcs(i,j)]\\
s[i+lcp(i,j)]\not=s[j+lcp(i,j)]\\
\]

这启发我们找出所有满足下列条件的子串对\(<i,j,len>\)

\[s[i,i+len-1]=s[j,j+len-1],s[i-1]\not=s[j-1],s[i+len]\not=s[j+len]
\]

可以知道它的贡献为

\[\sum_{\max(1,len-k2+1)}^{\min(len,k1)} k(len-k+1)=\sum_{k=1}^{min(len,k1)}k(len-k+1)-\sum_{k=1}^{\max(0,len-k2)}k(len-k+1)
\]

于是考虑建立SA,并记录后缀的前一个字符。

在height数组上从高到低启发式合并,一边统计答案。

#include <bits/stdc++.h>
#define ull unsigned long long
using namespace std; const int N=1e5+10; int n,k1,k2;
char s[N];
int sa[N],ht[N],rc[N],c[N];
int lp[N],rp[N],bl[N],siz[N],cnt[N][26]; void buildSa() {
int *x=ht,*y=rc,i,p,k,m=128;
for(i=0; i<=m; ++i) c[i]=0;
for(i=1; i<=n; ++i) c[x[i]=s[i]]++;
for(i=1; i<=m; ++i) c[i]+=c[i-1];
for(i=n; i>=1; --i) sa[c[x[i]]--]=i;
for(k=1; k<n; k<<=1) {
for(i=n-k+1,p=0; i<=n; ++i) y[++p]=i;
for(i=1; i<=n; ++i) if(sa[i]>k) y[++p]=sa[i]-k;
for(i=0; i<=m; ++i) c[i]=0;
for(i=1; i<=n; ++i) c[x[y[i]]]++;
for(i=1; i<=m; ++i) c[i]+=c[i-1];
for(i=n; i>=1; --i) sa[c[x[y[i]]]--]=y[i];
swap(x,y), x[sa[1]]=p=1;
for(i=2; i<=n; ++i) x[sa[i]]=
y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k]?p:++p;
if((m=p)>=n) break;
}
for(i=1; i<=n; ++i) rc[sa[i]]=i;
for(i=1,k=0; i<=n; ++i) {
p=sa[rc[i]-1]; if(k) k--;
while(s[i+k]==s[p+k]) ++k;
ht[rc[i]]=k;
}
// for(int i=1; i<=n; ++i) {
// cout<<(s+sa[i]);
// if(i>1) cout<<" "<<ht[i];
// cout<<endl;
// }
} pair<int,int> h[N];
ull sm(int x) {return (ull)x*(x+1)/2;}
ull ssm(int x) {return (ull)x*(2*x+1)*(x+1)/6;}
ull F(int x) {
if(x>=k1+k2) return 0;
ull s1=(ull)(x+1)*sm(min(x,k1))-ssm(min(x,k1));
ull s2=(ull)(x+1)*sm(max(0,x-k2))-ssm(max(0,x-k2));
return s1-s2;
}
ull f[N];
ull calc(int x,int y) {
ull res=(ull)siz[x]*siz[y];
for(int i=0; i<26; ++i) res-=(ull)cnt[x][i]*cnt[y][i];
return res;
}
void merge(int x,int y) {
for(int i=0; i<26; ++i) cnt[y][i]+=cnt[x][i];
for(int i=lp[x]; i<=rp[x]; ++i) bl[i]=y;
lp[y]=min(lp[y],lp[x]);
rp[y]=max(rp[y],rp[x]);
siz[y]+=siz[x];
} int main() {
scanf("%s%d%d",s+1,&k1,&k2);
n=strlen(s+1);
k1=min(k1,n);
k2=min(k2,n);
for(int i=1; i<=n; ++i) f[i]=F(i);
buildSa();
for(int i=1; i<=n; ++i) {
lp[i]=rp[i]=bl[i]=i; siz[i]=1;
if(sa[i]>1) cnt[i][s[sa[i]-1]-'a']++;
}
for(int i=2; i<=n; ++i)
h[i-1]=make_pair(-ht[i],i);
sort(h+1,h+n);
ull ans=0;
for(int i=1; i<n; ++i) {
int len=-h[i].first;
int x=bl[h[i].second];
int y=bl[h[i].second-1];
if(siz[x]>siz[y]) swap(x,y);
ans+=(ull)f[len]*calc(x,y);
merge(x,y);
// printf("%d,%d,%d,(%llu)\n",len,x,y,ans);
}
printf("%llu\n",ans);
return 0;
}

[LGP5115] Check,Check,Check one two!的更多相关文章

  1. 烟大 Contest1024 - 《挑战编程》第一章:入门 Problem G: Check The Check(模拟国际象棋)

    Problem G: Check The Check Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 10  Solved: 3[Submit][Statu ...

  2. uva 10196 Check The Check

    题目:10196 - Check The Check 思路:水题..模拟 这个代码,前半部分是在数统机房上课的时候写的,挫了点,懒得改了. #include <cstdio> #inclu ...

  3. UVA - 10196:Check The Check

    类型:简单模拟 大致题意:已知国际象棋行棋规则,给你一个局面,问是否将军?谁将谁的军?(保证不会同时将军) 思路:都以小写字母 测试 是否将 大写字母. 然后一个局面测两次(一次直接测,一次反转棋盘, ...

  4. SQL PRIMARY KEY 约束\SQL FOREIGN KEY 约束\SQL CHECK 约束

    SQL PRIMARY KEY 约束 PRIMARY KEY 约束唯一标识数据库表中的每条记录. 主键必须包含唯一的值. 主键列不能包含 NULL 值. 每个表都应该有一个主键,并且每个表只能有一个主 ...

  5. check约束条件

    --约束:对列的值起一个约束性的作用,规定列的值的范围 --主键.外键.非空.自增长标识列.唯一列(unique).check约束 --check 约束 --在某个表里点击右键→设计→进去找到要约束的 ...

  6. Health Check in eShop -- 解析微软微服务架构Demo(五)

    引言 What is the Health Check Health Check(健康状态检查)不仅是对自己应用程序内部检测各个项目之间的健康状态(各项目的运行情况.项目之间的连接情况等),还包括了应 ...

  7. SQLServer之修改CHECK约束

    使用SSMS数据库管理工具修改CHECK约束 1.打开数据库,选择数据表->右键点击->选择设计(或者展开约束,选择约束,右键点击,选择修改,后面步骤相同). 2.选择要修改的数据列-&g ...

  8. SQL CHECK 约束

    SQL CHECK 约束 CHECK 约束用于限制列中的值的范围. 如果对单个列定义 CHECK 约束,那么该列只允许特定的值. 如果对一个表定义 CHECK 约束,那么此约束会在特定的列中对值进行限 ...

  9. 约束4:唯一约束,Check约束和null

    大家知道,关系型数据库的逻辑运算的结果是三值型的,TRUE,FALSE和UNKNOWN,特别是,NULL值和任何值都不相等,任何值和NULL的比较,返回的逻辑结果都是unknown.而NULL值在唯一 ...

  10. The Singapore NRIC Check Digit

    The Singapore NRIC number is made up of 7 digits and a letter behind. This letter is calculated from ...

随机推荐

  1. 灰度图像--频域滤波 傅里叶变换之连续信号傅里叶变换(FT)

    学习DIP第20天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不 ...

  2. 23.Python位运算符详解

    位运算符通常在图形.图像处理和创建设备驱动等底层开发中使用.使用位运算符可以直接操作数值的原始 bit 位,尤其是在使用自定义的协议进行通信时,使用位运算符对原始数据进行编码和解码也非常有效. 位运算 ...

  3. linux 查看系统性能

    1. 查看内存和CPU信息 cat /proc/cpuinfo                   cpu信息 cat /proc/meminfo |grep MemTotal    内存信息 查看物 ...

  4. JVM-GC算法(二)-复制算法&&标记整理算法

    这次我和各位分享GC最后两种算法,复制算法以及标记/整理算法.上一篇在讲解标记/清除算法时已经提到过,这两种算法都是在此基础上演化而来的,究竟这两种算法优化了之前标记/清除算法的哪些问题呢? 复制算法 ...

  5. 03.从尾到头打印链表 (Java)

    题目描述 输入一个链表,按链表值从尾到头的顺序返回一个ArrayList. 思路 采用递归: 若当前节点不为空,则递归其后继节点,并将当前节点加入list中. 采用数据结构栈实现: 利用栈“后进先出” ...

  6. git 撤销修改和版本回退

    1. 工作区 文件只是在工作区进行了修改,还没有提交到暂存区(未进行 git  add 操作) 此时可以使用  git  checkout  --  filename  撤销工作区文件的修改 效果相当 ...

  7. IP输出 之 分片ip_fragment、ip_do_fragment

    概述 ip_fragment函数用于判断是否进行分片,在没有设置DF标记的情况下进入分片,如果设置了DF标记,则继续判断,如果不允许DF分片或者收到的最大分片大于MTU大小,则回复ICMP,释放skb ...

  8. Javascript和JQuery获取浏览器窗口各种尺寸

    原生JS 窗口尺寸: console.log('window.innerWidth = ' + window.innerWidth + '---window.innerHeight = ' + win ...

  9. selenium元素定位方式xpath总结

    一.绝对路径(不要使用,除非已经使用了所有方式仍然无法定位)方法:根据实际目录,逐层输写.例子: find_element_by_xpath("/html/body/div[2]/form/ ...

  10. TypeScript 编译目标(target)设置

    TypeScript的编译配置文件tsconfig.json中有许多配置项,本文简单对比编译目标环境的配置项(target)的设置.模块(module)不在本文讨论之内,是另外一个大话题. 实验对于t ...