[FJOI2017]矩阵填数
\(1.\)离散化出每一块内部不互相影响的块
\(2.\)\(dp[i][j]\)为前 \(i\) 种重叠块其中有 \(j\) 这些状态的矩阵的最大值被满足了的方案数 , 这样转移就之和这个块有关了 , 直接计算取最大值和不取的方案数即可
则当取最大值时,把对应方案数转移到 \(dp[i + 1][j | s[i + 1]]\),否则转移到 \(dp[i + 1][j]\)
故 \(dp[Bcnt][(1 << n) - 1]\)为最终的方案
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define debug(...) fprintf(stderr,__VA_ARGS__)
#define Debug(x) cout<<#x<<"="<<x<<endl
#define y1 Y1
using namespace std;
typedef long long LL;
const int INF=1e9+7;
inline LL read(){
register LL x=0,f=1;register char c=getchar();
while(c<48||c>57){if(c=='-')f=-1;c=getchar();}
while(c>=48&&c<=57)x=(x<<3)+(x<<1)+(c&15),c=getchar();
return f*x;
}
const int N=10005;
const int M=31;
const int mod=1e9+7;
int x1[M],x2[M],y1[M],y2[M],val[M];
int x[M],y[M],block[M*M],st[M*M],f[M*M][1100],blimit[M*M];
int n,m,Val,K,Xcnt,Ycnt,Bcnt;
namespace Math{
inline int add(int x,int y){x+=y;return x>=mod?x-mod:x;}
inline int dec(int x,int y){x-=y;return x<0?x+mod:x;}
inline int mul(LL x,int y){x*=y;return x>=mod?x%mod:x;}
inline int qpow(int a,int b){
int res=1;
while(b){
if(b&1) res=mul(res,a);
a=mul(a,a);
b>>=1;
}
return res;
}
}using namespace Math;
inline bool in(int x,int y,int i){
return x>=x1[i]&&x<=x2[i]&&y>=y1[i]&&y<=y2[i];//判断(x,y)是否在i这个矩形里面
}
inline void init(){
memset(f,0,sizeof f);
memset(st,0,sizeof st);
x[Xcnt=0]=0;
y[Ycnt=0]=0;
Bcnt=0;
}
inline int solve(){
n=read(),m=read(),Val=read(),K=read();
x[++Xcnt]=0;//一定要记得放一个0!!!
y[++Ycnt]=0;
for(int i=1;i<=K;i++){
x1[i]=read(),y1[i]=read(),x2[i]=read(),y2[i]=read(),val[i]=read();
x[++Xcnt]=x1[i]-1;
x[++Xcnt]=x2[i];
y[++Ycnt]=y1[i]-1;
y[++Ycnt]=y2[i];
}
x[++Xcnt]=n;
y[++Ycnt]=m;
sort(x+1,x+Xcnt+1);
sort(y+1,y+Ycnt+1);
Xcnt=unique(x+1,x+Xcnt+1)-x-1;
Ycnt=unique(y+1,y+Ycnt+1)-y-1;
for(int i=2;i<=Xcnt;i++)
for(int j=2;j<=Ycnt;j++){
block[++Bcnt]=(x[i]-x[i-1])*(y[j]-y[j-1]);
blimit[Bcnt]=Val;
for(int k=1;k<=K;k++){
if(in(x[i],y[j],k)) blimit[Bcnt]=min(blimit[Bcnt],val[k]);//首先用最小的来约束它
}
for(int k=1;k<=K;k++){
if(in(x[i],y[j],k)&&blimit[Bcnt]==val[k]) st[Bcnt]^=1<<(k-1);//初始化,统计出已经满足了哪些要求
}
}
f[0][0]=1;
for(int i=1;i<=Bcnt;i++){
//由于是这样一块一块转移,每次只需要考虑这一块里面的
int ful=st[i];
LL fail=qpow(blimit[i]-1,block[i]);
LL success=dec(qpow(blimit[i],block[i]),fail);//这一块取到最大值的方案
for(int j=0;j<(1<<K);j++){
f[i][j]=add(f[i][j],mul(f[i-1][j],fail));
f[i][j|ful]=add(f[i][j|ful],mul(f[i-1][j],success));
}
}
return f[Bcnt][(1<<K)-1];
}
int main(){
for(int i=read();i;i--) init(),printf("%d\n",solve());
}
[FJOI2017]矩阵填数的更多相关文章
- [FJOI2017]矩阵填数——容斥
参考:题解 P3813 [[FJOI2017]矩阵填数] 题目大意: 给定一个 h∗w 的矩阵,矩阵的行编号从上到下依次为 1...h ,列编号从左到右依次 1...w . 在这个矩阵中你需要在每个格 ...
- P3813 [FJOI2017]矩阵填数(组合数学)
P3813 [FJOI2017]矩阵填数 shadowice1984说:看到计数想容斥........ 这题中,我们把图分成若干块,每块的最大值域不同 蓝后根据乘法原理把每块的方案数(互不相干)相乘. ...
- [BZOJ5010][FJOI2017]矩阵填数(状压DP)
5010: [Fjoi2017]矩阵填数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 90 Solved: 45[Submit][Status][ ...
- bzoj5010: [Fjoi2017]矩阵填数
Description 给定一个 h*w 的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w.在这个矩阵中你需要在每 个格子中填入 1..m 中的某个数.给这个矩阵填数的时候有一 ...
- bzoj 5010: [Fjoi2017]矩阵填数
Description 给定一个 h*w 的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w.在这个矩阵中你需要在每 个格子中填入 1..m 中的某个数.给这个矩阵填数的时候有一 ...
- [luogu P3813] [FJOI2017] 矩阵填数 解题报告 (容斥原理)
题目链接: https://www.luogu.org/problemnew/show/P3813 题目: 给定一个 h*w的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w. ...
- BZOJ5010 FJOI2017矩阵填数(容斥原理)
如果只考虑某个子矩阵的话,其最大值为v的方案数显然是vsize-(v-1)size.问题在于处理子矩阵间的交叉情况. 如果两个交叉的子矩阵所要求的最大值不同,可以直接把交叉部分划给所要求的最大值较小的 ...
- P3813 [FJOI2017]矩阵填数
传送门 矩阵很大,但是发现 $n$ 很小,从这边考虑,对于一个一堆小矩阵放在一起的情况 考虑把每一块单独考虑然后方案再乘起来 但是这些奇怪的东西很不好考虑 所以暴力一点,直接拆成一个个小块 但是这样我 ...
- 【BZOJ】5010: [Fjoi2017]矩阵填数
[算法]离散化+容斥原理 [题意]给定大矩阵,可以每格都可以任意填1~m,给定n个子矩阵,要求满足子矩阵内的最大值为vi,求方案数. n<=10,h,w<=1w. [题解] 此题重点之一在 ...
随机推荐
- 1-5 构建官方example-Windows平台
https://github.com/facebook/react-native https://github.com/facebook/react-native.git https://githu ...
- UVA-11280 Flying to Fredericton
题意 给定一些国家,和两个国家间的花费,现在有一些询问,询问每次最多转k次飞机,最小花费 分析 最短路的裸题,跑spfa或者dijsktra什么的都行 多开一维来记录转k次飞机时的最短路是什么(拆点? ...
- ubuntu16.04 安装openpose
安装 Anaconda3 Tensorflow-cpu python3tensorflow 1.4.1+opencv3, protobuf, python3-tk ================== ...
- Linux 下五款出色的流媒体客户端
数 字流媒体这几天几乎占据了我音乐收听的全部时间.近年来我为了收藏 CD 花费了数量可观的费用:但它们中的大部分现在正静静地躺在满是灰尘的角落里.基本上所有的音乐流媒体服务所提供的的音质都不如 CD ...
- 网页中的foot底部定位问题
有时候,我们会碰到这样一个问题. 网页底部一般有个foot对吧,放置一些友情链接版权声明什么的,这个模块是如何定位的? 要是直接放内容区域的下面的话,假如是内容区域的高度不够的话,那么foot下面是会 ...
- Linux 下安装Yaf扩展
1.在官网下载了yaf扩展包 yaf-3.0.3.tgz 2.开始安装yaf扩展 tar zxvf yaf-3.0.3.tgz cd yaf-3.0.3 phpize ./configure --wi ...
- linux 的各个文件夹都是干什么用
http://www.ruanyifeng.com/blog/2012/02/a_history_of_unix_directory_structure.html http://www.pathnam ...
- Java Random、ThreadLocalRandom、UUID类中的方法应用(随机数)
1.Random:产生一个伪随机数(通过相同的种子,产生的随机数是相同的): Random r=new Random(); System.out.println(r.nextBoolean()); S ...
- wc.exe指令(C++)
https://github.com/kielingpao/wc 项目相关要求 wc.exe 是一个常见的工具,它能统计文本文件的字符数.单词数和行数.这个项目要求写一个命令行程序,模仿已有wc.ex ...
- 我用Django搭网站(3)-表单RSA加密
之前开发项目时因为种种原因一直使用明文提交,表单直接明文提交非常不安全,只要稍加操作就能轻易获取用户的信息.在众里寻他千百度之后决定使用RSA加密方式,简单可靠. 项目准备 一.安装PyCrypto库 ...