[FJOI2017]矩阵填数
\(1.\)离散化出每一块内部不互相影响的块
\(2.\)\(dp[i][j]\)为前 \(i\) 种重叠块其中有 \(j\) 这些状态的矩阵的最大值被满足了的方案数 , 这样转移就之和这个块有关了 , 直接计算取最大值和不取的方案数即可
则当取最大值时,把对应方案数转移到 \(dp[i + 1][j | s[i + 1]]\),否则转移到 \(dp[i + 1][j]\)
故 \(dp[Bcnt][(1 << n) - 1]\)为最终的方案
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define debug(...) fprintf(stderr,__VA_ARGS__)
#define Debug(x) cout<<#x<<"="<<x<<endl
#define y1 Y1
using namespace std;
typedef long long LL;
const int INF=1e9+7;
inline LL read(){
register LL x=0,f=1;register char c=getchar();
while(c<48||c>57){if(c=='-')f=-1;c=getchar();}
while(c>=48&&c<=57)x=(x<<3)+(x<<1)+(c&15),c=getchar();
return f*x;
}
const int N=10005;
const int M=31;
const int mod=1e9+7;
int x1[M],x2[M],y1[M],y2[M],val[M];
int x[M],y[M],block[M*M],st[M*M],f[M*M][1100],blimit[M*M];
int n,m,Val,K,Xcnt,Ycnt,Bcnt;
namespace Math{
inline int add(int x,int y){x+=y;return x>=mod?x-mod:x;}
inline int dec(int x,int y){x-=y;return x<0?x+mod:x;}
inline int mul(LL x,int y){x*=y;return x>=mod?x%mod:x;}
inline int qpow(int a,int b){
int res=1;
while(b){
if(b&1) res=mul(res,a);
a=mul(a,a);
b>>=1;
}
return res;
}
}using namespace Math;
inline bool in(int x,int y,int i){
return x>=x1[i]&&x<=x2[i]&&y>=y1[i]&&y<=y2[i];//判断(x,y)是否在i这个矩形里面
}
inline void init(){
memset(f,0,sizeof f);
memset(st,0,sizeof st);
x[Xcnt=0]=0;
y[Ycnt=0]=0;
Bcnt=0;
}
inline int solve(){
n=read(),m=read(),Val=read(),K=read();
x[++Xcnt]=0;//一定要记得放一个0!!!
y[++Ycnt]=0;
for(int i=1;i<=K;i++){
x1[i]=read(),y1[i]=read(),x2[i]=read(),y2[i]=read(),val[i]=read();
x[++Xcnt]=x1[i]-1;
x[++Xcnt]=x2[i];
y[++Ycnt]=y1[i]-1;
y[++Ycnt]=y2[i];
}
x[++Xcnt]=n;
y[++Ycnt]=m;
sort(x+1,x+Xcnt+1);
sort(y+1,y+Ycnt+1);
Xcnt=unique(x+1,x+Xcnt+1)-x-1;
Ycnt=unique(y+1,y+Ycnt+1)-y-1;
for(int i=2;i<=Xcnt;i++)
for(int j=2;j<=Ycnt;j++){
block[++Bcnt]=(x[i]-x[i-1])*(y[j]-y[j-1]);
blimit[Bcnt]=Val;
for(int k=1;k<=K;k++){
if(in(x[i],y[j],k)) blimit[Bcnt]=min(blimit[Bcnt],val[k]);//首先用最小的来约束它
}
for(int k=1;k<=K;k++){
if(in(x[i],y[j],k)&&blimit[Bcnt]==val[k]) st[Bcnt]^=1<<(k-1);//初始化,统计出已经满足了哪些要求
}
}
f[0][0]=1;
for(int i=1;i<=Bcnt;i++){
//由于是这样一块一块转移,每次只需要考虑这一块里面的
int ful=st[i];
LL fail=qpow(blimit[i]-1,block[i]);
LL success=dec(qpow(blimit[i],block[i]),fail);//这一块取到最大值的方案
for(int j=0;j<(1<<K);j++){
f[i][j]=add(f[i][j],mul(f[i-1][j],fail));
f[i][j|ful]=add(f[i][j|ful],mul(f[i-1][j],success));
}
}
return f[Bcnt][(1<<K)-1];
}
int main(){
for(int i=read();i;i--) init(),printf("%d\n",solve());
}
[FJOI2017]矩阵填数的更多相关文章
- [FJOI2017]矩阵填数——容斥
参考:题解 P3813 [[FJOI2017]矩阵填数] 题目大意: 给定一个 h∗w 的矩阵,矩阵的行编号从上到下依次为 1...h ,列编号从左到右依次 1...w . 在这个矩阵中你需要在每个格 ...
- P3813 [FJOI2017]矩阵填数(组合数学)
P3813 [FJOI2017]矩阵填数 shadowice1984说:看到计数想容斥........ 这题中,我们把图分成若干块,每块的最大值域不同 蓝后根据乘法原理把每块的方案数(互不相干)相乘. ...
- [BZOJ5010][FJOI2017]矩阵填数(状压DP)
5010: [Fjoi2017]矩阵填数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 90 Solved: 45[Submit][Status][ ...
- bzoj5010: [Fjoi2017]矩阵填数
Description 给定一个 h*w 的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w.在这个矩阵中你需要在每 个格子中填入 1..m 中的某个数.给这个矩阵填数的时候有一 ...
- bzoj 5010: [Fjoi2017]矩阵填数
Description 给定一个 h*w 的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w.在这个矩阵中你需要在每 个格子中填入 1..m 中的某个数.给这个矩阵填数的时候有一 ...
- [luogu P3813] [FJOI2017] 矩阵填数 解题报告 (容斥原理)
题目链接: https://www.luogu.org/problemnew/show/P3813 题目: 给定一个 h*w的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w. ...
- BZOJ5010 FJOI2017矩阵填数(容斥原理)
如果只考虑某个子矩阵的话,其最大值为v的方案数显然是vsize-(v-1)size.问题在于处理子矩阵间的交叉情况. 如果两个交叉的子矩阵所要求的最大值不同,可以直接把交叉部分划给所要求的最大值较小的 ...
- P3813 [FJOI2017]矩阵填数
传送门 矩阵很大,但是发现 $n$ 很小,从这边考虑,对于一个一堆小矩阵放在一起的情况 考虑把每一块单独考虑然后方案再乘起来 但是这些奇怪的东西很不好考虑 所以暴力一点,直接拆成一个个小块 但是这样我 ...
- 【BZOJ】5010: [Fjoi2017]矩阵填数
[算法]离散化+容斥原理 [题意]给定大矩阵,可以每格都可以任意填1~m,给定n个子矩阵,要求满足子矩阵内的最大值为vi,求方案数. n<=10,h,w<=1w. [题解] 此题重点之一在 ...
随机推荐
- 用C/C++扩展你的PHP
PHP取得成功的一个主要原因之一是她拥有大量的可用扩展.web开发者无论有何种需求,这种需求最有可能在PHP发行包里找到.PHP发行包包括支持各种数据库,图形文件格式,压缩,XML技术扩展在内的许多扩 ...
- spring框架 事务 注解配置方式
user=LF password=LF jdbcUrl=jdbc:oracle:thin:@localhost:1521:orcl driverClass=oracle.jdbc.driver.Ora ...
- 360 安全卫士 for Linux 使用结果
测试了一把,结果显示360基本对Linux社区规范和安全常识不give a fuck. 胡乱打包 首先,这个deb包就是胡乱打包,依赖关系就没弄好: $ dpkg-deb -I 360safeforl ...
- 微信WeixinJSBridge API 屏蔽右上角分享等常用方法
WeixinJSBridge这个API有几个功能还是相当有用的,比如: 1.隐藏微信网页右上角的按钮(...按钮):开发者可以用这个功能来禁止当前页面被分享 2.隐藏微信网页底部的导航栏(比如前进后退 ...
- Asp.NET中把DataTable导出为Excel ,中文有乱码现象解决办法
//DataTable为要导出的数据表 DataGrid dg = new DataGrid(); dg.DataSource = DataTable; ...
- POJ3233 Matrix Power Series(矩阵快速幂+分治)
Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. ...
- Max Sum(动态规划)
原创 http://acm.hdu.edu.cn/showproblem.php?pid=1003 题目要求求出一个序列里面的最大序列和,序列要求是连续的,给出最大序列和,序列首元素下标和尾元素下标, ...
- 「BZOJ 5188」「Usaco2018 Jan」MooTube
题目链接 luogu bzoj \(Describe\) 有一个\(n\)个节点的树,边有权值,定义两个节点之间的距离为两点之间的路径上的最小边权 给你\(Q\)个询问,问你与点\(v\)的距离大于等 ...
- [转]解读Unity中的CG编写Shader系列二
上一篇文章的例子中我们可以看到顶点着色器的输出参数可以说是直接作为了片段着色器的形参传递过来,那么不由得一个问题浮现出来,顶点着色器的形参是从何处传递过来的? 顶点着色器的形参是gameObject ...
- 可变大小、颜色边框、样式的UISwitch
1.CHSwitch.h // // 文 件 名:CHSwitch.h // // 版权所有:Copyright © 2018 lelight. All rights reserved. // 创 建 ...