数据范围过大说明这个题和组合一点关系也没有,答案基本上肯定是ab的形式了。暴力打表感觉不太好写,找到当年的题面发现还有个样例是6 40 401898087,于是暴力找ab=401898087的数,发现一组a=64 b=40,可以发现a=2n b=k,同时也符合第一组数据,于是就做完了。

  可以发现集合中的数字互不影响,对每个数字分别考虑。问题变为在一个全0三角形中填一些1,使得若ai,j=1,则ai-1,j=ai-1,j=1。

  容易发现每行为1的一定是一个前缀。设fi,j为第i行有j个1的方案数,则fi,j=Σfi-1,k (j<=k<=i-1),fi,i=1。归纳得fi,j=2i-j-1(i>j)。

  那么这个填法的数量是2k,每个数字都有这么多填法,答案即为2nk

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define P 1000000007
int n,m;
int ksm(int a,int k)
{
int s=;
for (;k;k>>=,a=1ll*a*a%P) if (k&) s=1ll*s*a%P;
return s;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4475.in","r",stdin);
freopen("bzoj4475.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
cout<<ksm(ksm(,n),m);
return ;
}

BZOJ4475 JSOI2015子集选取(动态规划)的更多相关文章

  1. BZOJ4475[Jsoi2015]子集选取——递推(结论题)

    题目描述 输入 输入包含一行两个整数N和K,1<=N,K<=10^9 输出 一行一个整数,表示不同方案数目模1,000,000,007的值. 样例输入 2 2 样例输出 16   可以发现 ...

  2. BZOJ4475 [Jsoi2015]子集选取

    Description 有一些\(\{1\dots n\}\)的子集\(A_{i,j}, 1\leq j\leq i\leq k\)共\(\frac{k(k+1)}2\)个,满足\(A_{i,j}\s ...

  3. BZOJ4475: [Jsoi2015]子集选取【找规律】【数学】

    Description Input 输入包含一行两个整数N和K,1<=N,K<=10^9 Output 一行一个整数,表示不同方案数目模1,000,000,007的值. Sample In ...

  4. [BZOJ4475][JSOI2015]子集选取[推导]

    题意 题目链接 分析 显然可以看成一个位数为 \(n\) 的二进制数然后每一位分开考虑然后求和.最后的答案是 \(w^n\) 的形式. 考虑一个dp. 定义状态 \(f_{i}\) 表示选择了长度为 ...

  5. 【BZOJ4475】 [Jsoi2015]子集选取

    题目描述 数据范围 \(1\leq N,K \leq 10^9\) \(solution\) 集合S中每个元素互不影响,不妨依次考虑其中一个元素在三角形中的出现情况 问题转化为一个\(0/1\)的三角 ...

  6. 【BZOJ4475】子集选取(计数)

    题意: 思路: #include<cstdio> #include<cstdlib> #include<iostream> #include<algorith ...

  7. [题解] LuoguP6075 [JSOI2015]子集选取

    传送门 ps: 下面\(n\)和\(k\)好像和题目里的写反了...将就着看吧\(qwq\) 暴力打个表答案就出来了? 先写个结论,答案就是\(2^{nk}\). 为啥呢? 首先你需要知道,因为一个集 ...

  8. bzoj 4475: [Jsoi2015]子集选取

    233,扒题解的时候偷瞄到这个题的题解了,,GG 暴力发现是2^(nm),然后就是sb题了 #include <bits/stdc++.h> #define LL long long us ...

  9. 洛谷 P6075 [JSOI2015]子集选取

    链接:P6075 前言: 虽然其他大佬们的走分界线的方法比我巧妙多了,但还是提供一种思路. 题意: %&¥--@#直接看题面理解罢. 分析过程: 看到这样的题面我脑里第一反应就是DP,但是看到 ...

随机推荐

  1. 数据解压及if else的应用

    def sum(items): head, *tails = items return head + sum(tails) if tails else head # 最后一句有点像三目运算符,如果ta ...

  2. spark-day1

    #!/usr/bin/python # -*- coding: utf_8 -*- from pyspark import SparkConf, SparkContext import os, tim ...

  3. Python全栈day 02

    Python全栈day 02 一.循环语句 while 用法 num = 1 while num <= 10: print(num) num += 1 # 循环打印输出1-10 while el ...

  4. 20145202马超《网络对抗》Exp3免杀 进阶

    木马化正常软件,如通过改变机器指令.实现可免杀免防火墙提示的后门. 继上次实验3所做的代码在主函数里面加上一行调用就可以 改各种属性,这里我参考了郝浩同学的博客 最后我还是遇到了问题 后来发现虽然有那 ...

  5. 关于cookie的一些学习笔记

    0x00 发现自己对一些原理性的东西实在是太不了解 最近看了<cookie之困>记一下笔记 0x01 因为http是无状态的 所以需要cookie和session来保持http的会话状态和 ...

  6. Android开发——Android系统启动以及APK安装、启动过程

    0. 前言   从Android手机打开开关,到我们可以使用其中的app时,这个启动过程到底是怎么样的? 1.  系统上电 当给Android系统上电,在电源接通的瞬间,CPU内的寄存器和各引脚均会被 ...

  7. 第四模块:网络编程进阶&数据库开发 考核实战

     1.什么是进程?什么是线程? 什么是协程? 进程:正在进行的一个过程或者说一个任务.而负责执行任务则是cpu. 线程:在传统操作系统中,每个进程有一个地址空间,而且默认就有一个控制线程 协程是一种用 ...

  8. Hibernate-ORM:11.Hibernate中的关联查询

    ------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- 本篇博客将讲述Hibernate中的关联查询,及其级联(cascade)操作,以及指定哪一方维护关联关系的(i ...

  9. PADS9.5打开Altium designer09的原理图

    1. 打开PADS Logic原理图工具,文件---导入 2. 选择Protel DXP这个选项,找到相应的文件即可打开.

  10. SXOI2018游记

    day0 动身去太原.太原五中虽然挺小的但是很好看啊qwq(进门口一个"通天堂"(逃 试机.似乎看到了__stdcall!!然而没敢去认orz.linux选手似乎是9个.准考证(一 ...