BZOJ4475 JSOI2015子集选取(动态规划)
数据范围过大说明这个题和组合一点关系也没有,答案基本上肯定是ab的形式了。暴力打表感觉不太好写,找到当年的题面发现还有个样例是6 40 401898087,于是暴力找ab=401898087的数,发现一组a=64 b=40,可以发现a=2n b=k,同时也符合第一组数据,于是就做完了。
可以发现集合中的数字互不影响,对每个数字分别考虑。问题变为在一个全0三角形中填一些1,使得若ai,j=1,则ai-1,j=ai-1,j=1。
容易发现每行为1的一定是一个前缀。设fi,j为第i行有j个1的方案数,则fi,j=Σfi-1,k (j<=k<=i-1),fi,i=1。归纳得fi,j=2i-j-1(i>j)。
那么这个填法的数量是2k,每个数字都有这么多填法,答案即为2nk。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define P 1000000007
int n,m;
int ksm(int a,int k)
{
int s=;
for (;k;k>>=,a=1ll*a*a%P) if (k&) s=1ll*s*a%P;
return s;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4475.in","r",stdin);
freopen("bzoj4475.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
cout<<ksm(ksm(,n),m);
return ;
}
BZOJ4475 JSOI2015子集选取(动态规划)的更多相关文章
- BZOJ4475[Jsoi2015]子集选取——递推(结论题)
题目描述 输入 输入包含一行两个整数N和K,1<=N,K<=10^9 输出 一行一个整数,表示不同方案数目模1,000,000,007的值. 样例输入 2 2 样例输出 16 可以发现 ...
- BZOJ4475 [Jsoi2015]子集选取
Description 有一些\(\{1\dots n\}\)的子集\(A_{i,j}, 1\leq j\leq i\leq k\)共\(\frac{k(k+1)}2\)个,满足\(A_{i,j}\s ...
- BZOJ4475: [Jsoi2015]子集选取【找规律】【数学】
Description Input 输入包含一行两个整数N和K,1<=N,K<=10^9 Output 一行一个整数,表示不同方案数目模1,000,000,007的值. Sample In ...
- [BZOJ4475][JSOI2015]子集选取[推导]
题意 题目链接 分析 显然可以看成一个位数为 \(n\) 的二进制数然后每一位分开考虑然后求和.最后的答案是 \(w^n\) 的形式. 考虑一个dp. 定义状态 \(f_{i}\) 表示选择了长度为 ...
- 【BZOJ4475】 [Jsoi2015]子集选取
题目描述 数据范围 \(1\leq N,K \leq 10^9\) \(solution\) 集合S中每个元素互不影响,不妨依次考虑其中一个元素在三角形中的出现情况 问题转化为一个\(0/1\)的三角 ...
- 【BZOJ4475】子集选取(计数)
题意: 思路: #include<cstdio> #include<cstdlib> #include<iostream> #include<algorith ...
- [题解] LuoguP6075 [JSOI2015]子集选取
传送门 ps: 下面\(n\)和\(k\)好像和题目里的写反了...将就着看吧\(qwq\) 暴力打个表答案就出来了? 先写个结论,答案就是\(2^{nk}\). 为啥呢? 首先你需要知道,因为一个集 ...
- bzoj 4475: [Jsoi2015]子集选取
233,扒题解的时候偷瞄到这个题的题解了,,GG 暴力发现是2^(nm),然后就是sb题了 #include <bits/stdc++.h> #define LL long long us ...
- 洛谷 P6075 [JSOI2015]子集选取
链接:P6075 前言: 虽然其他大佬们的走分界线的方法比我巧妙多了,但还是提供一种思路. 题意: %&¥--@#直接看题面理解罢. 分析过程: 看到这样的题面我脑里第一反应就是DP,但是看到 ...
随机推荐
- 快速玩转linux(1)
快速上手Linux玩转典型应用 mark 大牛都会使用Linux, Linux命令是行业要求. 商业服务器基本都是linux 开源软件都先支持Linux(只支持) 大数据分析.机器学习首选Linux ...
- 台式机上如何配置并使用苹果iPhone的耳机麦克风 并且麦克风开启降噪功能
这个资料和技巧在网络上面很少有人分享,但是可能会有不少人需要这个东西.这里分享下经验.这也是一个困扰我很久的一个问题.因为买来了这个转接头,发现,录音的时候iPhone的耳机麦克风有很大的噪音无法消除 ...
- 初学Splunk
splunk简介 https://www.splunk.com/zh-hans_cn/download.html splunk 简体中文版手册 http://docs.splunk.com/Docum ...
- click与on的区别
click只能用于html在注册事件之后没有变化的:on用于html在注册事件后,还会通过JS脚本添加一些按钮,并者希望这些按钮也会有之前注册事件的按钮同样的事件话,就需要用on去为按钮的父节点去注册 ...
- Java : java基础(2) 集合&正则&异常&File类
Obj 方法: hashCode() 返回内存地址值, getClass() 返回的时运行时类, getName() 返回类名, toString() 把名字和hashCode() 合在一起返回,如果 ...
- JavaSE 第二次学习随笔(五)
/* * 中文乱码出现的情况研究 * 注意点:乱码解决的办法是再编码再解码 * 但是如果是编码出错了,无法解决.如果是解码出错了,可以利用再编码再解码 * * * 编码 解码 结果 * GBK utf ...
- 3.2 进程间通信之fifo
一.引言 FIFO常被称为有名管道,不同于管道(pipe).pipe仅适用于“有血缘关系”的IPC.但FIFO还可以应用于不相关的进程的IPC.实际上,FIFO是Linux基础文件类型中的一种,是在读 ...
- 3. 进程间通信IPC
一.概念 IPC: 1)在linux环境中的每个进程各自有不同的用户地址空间.任何一个进程的全局变量在另一个进程中都看不到,所以进程和进程之间是不能相互访问. 2)如果进程间要交换数据必须通过内核,在 ...
- Python学习:1.快速搭建python环境
一.安装python 现在python有两个比较大的版本一个是python3.x一个是python2.x,python3.x相当于与python2.x是一个比较大的升级,但是python3.x没有向下 ...
- 部署:阿里云ECS部署Docker CE
1 部署阿里云ECS,选择CentOS操作系统,并启动实例: 2 部署Docker CE: a.检查centos版本: $ cat /etc/redhat-release CentOS Linux r ...