bzoj 4182
首先很容易看出这是一个树上多重背包问题
设状态$f[i][j]$表示以$i$为根的子树中利用的体积是$j$
但是题目中有要求:选择的点集必须是一个联通块
这要怎么处理?
点分治!
首先我们利用点分治的思想,每次拎起一个根节点进行处理,要求这个根节点必选,然后在子树内进行dp
为了保证根节点必选(至少选一个),所以我们在初值时按根节点先选一个处理,也就是在最大合法体积上先去掉一个根节点的体积,然后进行dfs更新,对于子树中每个点同理。
多重背包用二进制优化
#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std;
const int inf=0x3f3f3f3f;
struct Edge
{
int next;
int to;
}edge[];
int head[];
int w[];
int v[];
int d[];
int maxp[];
int siz[];
int f[][];
bool vis[];
int s,rt;
int cnt=;
int ans=;
int n,m;
int T;
void init()
{
memset(head,-,sizeof(head));
memset(vis,,sizeof(vis));
memset(f,,sizeof(f));
ans=;
cnt=;
}
void add(int l,int r)
{
edge[cnt].next=head[l];
edge[cnt].to=r;
head[l]=cnt++;
}
void get_rt(int x,int fx)
{
siz[x]=,maxp[x]=;
for(int i=head[x];i!=-;i=edge[i].next)
{
int to=edge[i].to;
if(to==fx||vis[to])continue;
get_rt(to,x);
siz[x]+=siz[to],maxp[x]=max(maxp[x],siz[to]);
}
maxp[x]=max(maxp[x],s-siz[x]);
if(maxp[x]<maxp[rt])rt=x;
}
void dfs(int x,int fx,int lim)
{
if(lim<=)return;
int j=d[x];
for(int i=;i<j;j-=i,i<<=)
{
for(int k=lim;k>=i*v[x];k--)f[x][k]=max(f[x][k],f[x][k-i*v[x]]+i*w[x]);
}
for(int k=lim;k>=j*v[x];k--)f[x][k]=max(f[x][k],f[x][k-j*v[x]]+j*w[x]);
for(int i=head[x];i!=-;i=edge[i].next)
{
int to=edge[i].to;
if(vis[to]||to==fx)continue;
for(int j=;j<=lim-v[to];j++)f[to][j]=f[x][j]+w[to];
dfs(to,x,lim-v[to]);
for(int j=;j<=lim-v[to];j++)f[x][j+v[to]]=max(f[x][j+v[to]],f[to][j]);
}
}
void solve(int x)
{
vis[x]=;
for(int i=;i<=m-v[x];i++)f[x][i]=w[x];
dfs(x,,m-v[x]);
for(int i=;i<=m-v[x];i++)ans=max(ans,f[x][i]);
for(int i=head[x];i!=-;i=edge[i].next)
{
int to=edge[i].to;
if(vis[to])continue;
rt=,s=siz[to],maxp[rt]=inf;
get_rt(to,);
solve(rt);
}
}
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
init();
for(int i=;i<=n;i++)scanf("%d",&w[i]);
for(int i=;i<=n;i++)scanf("%d",&v[i]);
for(int i=;i<=n;i++)scanf("%d",&d[i]),d[i]--;
for(int i=;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
add(x,y),add(y,x);
}
rt=;
maxp[rt]=s=n;
get_rt(,);
solve(rt);
printf("%d\n",ans);
}
return ;
}
bzoj 4182的更多相关文章
- BZOJ.4182.Shopping(点分治/dsu on tree 树形依赖背包 多重背包 单调队列)
BZOJ 题目的限制即:给定一棵树,只能任选一个连通块然后做背包,且每个点上的物品至少取一个.求花费为\(m\)时最大价值. 令\(f[i][j]\)表示在点\(i\),已用体积为\(j\)的最大价值 ...
- BZOJ 4182 Shopping (点分治+树上多重背包)
题目大意:给你一颗树,你有$m$元钱,每个节点都有一种物品,价值为$w$,代价为$c$,有$d$个,如果在$u$和$v$两个城市都购买了至少一个物品,那么$u,v$路径上每个节点也都必须买至少一个物品 ...
- Week Five
2018.12.25 1.[BZOJ 4310] 2.[BZOJ 3879] 3.[BZOJ 2754] 4.[BZOJ 4698] 5.[Codeforces 914E] 6.[Codeforces ...
- dsu on tree:关于一类无修改询问子树可合并问题
dsu on tree:关于一类无修改询问子树可合并问题 开始学长讲课的时候听懂了但是后来忘掉了....最近又重新学了一遍 所谓\(dsu\ on\ tree\)就是处理本文标题:无修改询问子树可合并 ...
- BZOJ 2127: happiness [最小割]
2127: happiness Time Limit: 51 Sec Memory Limit: 259 MBSubmit: 1815 Solved: 878[Submit][Status][Di ...
- BZOJ 3275: Number
3275: Number Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 874 Solved: 371[Submit][Status][Discus ...
- BZOJ 2879: [Noi2012]美食节
2879: [Noi2012]美食节 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1834 Solved: 969[Submit][Status] ...
- bzoj 4610 Ceiling Functi
bzoj 4610 Ceiling Functi Description bzoj上的描述有问题 给出\(n\)个长度为\(k\)的数列,将每个数列构成一个二叉搜索树,问有多少颗形态不同的树. Inp ...
- BZOJ 题目整理
bzoj 500题纪念 总结一发题目吧,挑几道题整理一下,(方便拖板子) 1039:每条线段与前一条线段之间的长度的比例和夹角不会因平移.旋转.放缩而改变,所以将每条轨迹改为比例和夹角的序列,复制一份 ...
随机推荐
- 2 时间管理和内存管理
时间管理 uC/OS-II的时间管理是通过定时中断来实现的,该定时中断一般为10毫秒或100毫秒发生一次(这个时间片段是OS的作者推荐的,大家可以参考邵贝贝翻译的<嵌入式实时操作系统ucos-I ...
- 不要向没权力&能力的人证明自己的能力
[不要向没权力&能力的人证明自己的能力] 不是所有的上级都有足够的权力和能力.一个没权力的Leader,即使你向他证明了自己的能力,你所能获得的也只能是他的邮件表扬的荣誉.对于加薪,他能给的仅 ...
- JAVA 微信开发
公司最近要搭建一个java的微信系统,感觉自己没有记录的很多所以从今天开始每天开始更新一遍java的微信文章记录. 如有兴趣的可以加入群463676190,一起交流交流
- webservice CXF 相关面试题
Web Service的优点(1) 可以让异构的程序相互访问(跨平台)(2) 松耦合(3) 基于标准协议(通用语言,允许其他程序访问) 1:WEB SERVICE名词解释.JSWDL开发包的介绍.JA ...
- Linux pkg-config命令
一.简介 pkg-config用来检索系统中安装库文件的信息.典型的是用作库的编译和连接. 二.实例 http://blog.chinaunix.net/uid-20595934-id-1918368 ...
- loj2512 [BJOI2018]链上二次求和
传送门 分析 咕咕咕 代码 #include<iostream> #include<cstdio> #include<cstring> #include<st ...
- Part9---代码搬移不可少
1.回顾ARM启动流程就可知道需要执行代码搬移 2.代码搬移 1)起点:NAND FLASH,今天的起点是SRAM垫脚石.为什么?因为我们要从nandflash取搬移数据需要先对其进行初始化,二而我们 ...
- Java学习——JSTL标签与EL表达式之间的微妙关系
原文总结的太好了,忍不住记录.转发. 原文地址:http://blog.csdn.net/u010168160/article/details/49182867 目录(?)[-] 一EL表达式 EL相 ...
- [GO]冒泡排序的原理和代码实现
冒泡排序的原理:对于一个数组里所有的元素进行两两比较,发生大于则变换数组下标则为升序排序,发生小于则变换数据下标的则为降序排序 比如给定的数组为[1, -2, 3, -4],对于我们的需求,两两比较后 ...
- Django-Web框架之创建项目和应用
Django我们是基于python3来演示的.首先我们来安装一下django框架.使用pip3 install django安装的是最新的版本: 我们在pycharm中创建django工程.如图所示: ...