题目传送门

思路:

  区间合并线段树的题,第一次写,对于一颗子树,无论这个子树怎么交换,都不会对其他子树的逆序对造成影响,所以就直接算逆序对就好。

  注意叶子节点是1到n的全排列,所以每个权值都只会出现1次,合并很好写。

  注意动态开点,最多n个叶子节点,然后每次查询用到log个子树节点,(这句话似乎有语病)所以要开nlogn的空间。

#include<bits/stdc++.h>
#define clr(a,b) memset(a,b,sizeof(a))
#define fpn() freopen("simple.in","r",stdin)
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const int maxn=;
int n,q,tot,r,k,cnt;
int R[maxn*],rt[maxn*],L[maxn*],val[maxn*],ch[maxn*][];
ll sum[maxn*],ans,anl,anr;
void read(int &r){
r=++tot;
scanf("%d",&val[r]);
if(!val[r]){
read(ch[r][]);
read(ch[r][]);
}
}
void pushup(int x){
sum[x]=sum[L[x]]+sum[R[x]];
}
void insert(int &x,int l,int r,int p){
x=++cnt;
int mid=(l+r)>>;
if(l==r){
sum[x]=;
return;
}
if(p<=mid)insert(L[x],l,mid,p);
else insert(R[x],mid+,r,p);
pushup(x);
}
int merge(int x,int y){
if(!x)return y;
if(!y)return x;
anl+=sum[L[x]]*sum[R[y]];
anr+=sum[L[y]]*sum[R[x]];
L[x]=merge(L[x],L[y]);
R[x]=merge(R[x],R[y]);
pushup(x);
return x;
}
ll dfs(int x){
ll ans=;
if(!val[x]){ ans+=dfs(ch[x][])+dfs(ch[x][]);
anl=anr=;
rt[x]=merge(rt[ch[x][]],rt[ch[x][]]);
ans+=min(anl,anr);
}else{
insert(rt[x],,n,val[x]);
}
return ans;
}
int main(){
scanf("%d",&n);
read(r);
ans=dfs();
cout<<ans<<endl;
}

bzoj2212 Tree Rotations 线段树合并+动态开点的更多相关文章

  1. [bzoj2212]Tree Rotations(线段树合并)

    解题关键:线段树合并模板题.线段树合并的题目一般都是权值线段树,因为结构相同,求逆序对时,遍历权值线段树的过程就是遍历所有mid的过程,所有能求出所有逆序对. #include<iostream ...

  2. 【BZOJ2212】[Poi2011]Tree Rotations 线段树合并

    [BZOJ2212][Poi2011]Tree Rotations Description Byteasar the gardener is growing a rare tree called Ro ...

  3. BZOJ2212 [Poi2011]Tree Rotations 线段树合并 逆序对

    原文链接http://www.cnblogs.com/zhouzhendong/p/8079786.html 题目传送门 - BZOJ2212 题意概括 给一棵n(1≤n≤200000个叶子的二叉树, ...

  4. bzoj2212[Poi2011]Tree Rotations [线段树合并]

    题面 bzoj ans = 两子树ans + min(左子在前逆序对数, 右子在前逆序对数) 线段树合并 #include <cstdio> #include <cstdlib> ...

  5. BZOJ.2212.[POI2011]Tree Rotations(线段树合并)

    题目链接 \(Description\) 给定一棵n个叶子的二叉树,每个叶节点有权值(1<=ai<=n).可以任意的交换两棵子树.问最后顺序遍历树得到的叶子权值序列中,最少的逆序对数是多少 ...

  6. Bzoj P2212 [Poi2011]Tree Rotations | 线段树合并

    题目链接 通过观察与思考,我们可以发现,交换一个结点的两棵子树,只对这两棵子树内的节点的逆序对个数有影响,对这两棵子树以外的节点是没有影响的.嗯,然后呢?(っ•̀ω•́)っ 然后,我们就可以对于每一个 ...

  7. bzoj2212/3702 [Poi2011]Tree Rotations 线段树合并

    Description Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some in ...

  8. HDU 5877 2016大连网络赛 Weak Pair(树状数组,线段树,动态开点,启发式合并,可持久化线段树)

    Weak Pair Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Tota ...

  9. BZOJ_2212_[Poi2011]Tree Rotations_线段树合并

    BZOJ_2212_[Poi2011]Tree Rotations_线段树合并 Description Byteasar the gardener is growing a rare tree cal ...

随机推荐

  1. win7 下安装mysql 整理

    1.去官网下载mysql-5.6.13-winx64.zip包.地址: http://dev.mysql.com/downloads/mysql/5.6.html 2,把安装包解压到自己指定的目录,我 ...

  2. Server嵌套事务处理的方法

    源文档 http://wenku.baidu.com/link?url=yUH8Yhb8isIvJb8A7c0Hv_ktFSLt-JTvrQd2e2TGmFwzwGWqkjFfb1tXv5ZR1FmP ...

  3. msql 计算连续签到天数

    刚刚写了一个签到计算天数的sql, 记录下来. 思路如下: 获取当前签到的最后时间(今天或昨天), 定义一个变量@i 对签到时间进行天数自减, 然后查询出当前记录签到时间是否与自减后的时间匹配.   ...

  4. Docker学习笔记_Dockerfile常用指令

    Dockerfile常用指令

  5. 更改windows服务的配置文件(app.config)必须重启服务才能生效吗?

    这个问题是前一阶段写windows服务碰到的.本来在写获取配置文件的某个配置的值的时候,通常我都是写类似下面的这么一个静态方法来获取: 1: /// <summary> 2: /// 获取 ...

  6. Apache htpasswd命令

    一.简介 htpasswd是apache的一个工具,该工具主要用于建立和更新存储用户名.密码的文本文件,主要用于对基于http用户的认证. 二.语法 Usage: htpasswd [-cimBdps ...

  7. Luogu 4251 [SCOI2015]小凸玩矩阵

    BZOJ 4443 二分答案 + 二分图匹配 外层二分一个最小值,然后检验是否能选出$n - k + 1$个不小于当前二分出的$mid$的数.对于每一个$a_{i, j} \geq mid$,从$i$ ...

  8. 解决selenium与firefox版本不兼容问题

    Python环境下类比 个人使用 32位环境 Python 2.7.12 Selenium 2.53.6 Firefox 47.01 安装selenium可用pip选择对应版本,参考另一教程. 因为在 ...

  9. 命令之 ulimit

    help ulimit help ulimit ulimit: ulimit [-SHacdefilmnpqrstuvx] [limit] Modify shell resource limits. ...

  10. 编写高质量代码改善C#程序的157个建议——建议43:让接口中的泛型参数支持协变

    建议43:让接口中的泛型参数支持协变 除了上一建议中提到的使用泛型参数兼容接口不可变性外,还有一种办法是为接口中的泛型声明加上out关键字来支持协变,如下所示: interface ISalary&l ...