Toward Convolutional Blind Denoising of Real Photographs
本文提出了一个针对真实图像的盲卷积去噪网络,增强了深度去噪模型的鲁棒性和实用性。
摘要
作者提出了一个 CBD-Net,由噪声估计子网络和去噪子网络两部分组成。
作者设计了一个更加真实的噪声模型,同时考虑了信号依赖的噪声和相机内部处理的噪声。
基于真实噪声模型合成的图片和真实的噪声图片被联合在一起对网络进行训练。
噪声模型
除了高斯噪声,真实的图片噪声更加复杂,并且是信号依赖的。
给定一个干净图片 x,一个更加真实的噪声模型 \(n(x) ~ N(0, \sigma(y))\) 可以表示为:

其中,\(n(x) = n_s (x) + n_c\) 包含一个信号依赖的组成 \(n_s\) 和一个静态的噪声组成 \(n_c\)。\(n_c\) 是一个方差为 \(\sigma_c ^2\) 的高斯噪声, \(n_s\) 则和图像的像素值有关,比如 \(x(i) * \sigma_s^2\)。
另外,我们再把相机内部处理过程考虑进去的话,就会产生以下这个信号依赖和通道依赖的噪声模型。

\(y\) 表示合成图片, \(f\) 代表相机反应函数(CRF),\(M\) 代表将 sRGB 图片转化为 Bayer 图片的函数,\(M^{-1}\)代表去马赛克函数。
此外,为了扩展到对压缩图片的处理,我们把 JPEG 压缩也考虑进合成图片的生成过程。

- 针对原始图片、无压缩图片和压缩图片,我们分别用以上三种模型来生成训练图片。
网络结构

噪声等级子网络由五层的卷积组成,卷积核大小为 3*3,通道数为 32,激活函数采用 Relu,没有采用池化和批归一化,输出的噪声等级图和原噪声图片大小相同。
去噪子网络将噪声等级图和原噪声图片一起作为输入,采用了 U-Net 的网络结构,卷积核大小为 3*3,激活函数采用 Relu,学习噪声图片的残差。
非对称学习
作者用传统的去噪方法 BM3D/FFDNet 做了一个实验。当给定的噪声等级和真实噪声等级一样时,去噪效果毋庸置疑是最好的。当给定的噪声等级低于真实噪声等级一样时,去噪结果仍然有可见的噪声;但当给定的噪声等级高于真实噪声等级一样时,仍然可以取得非常满意的结果。

- 为了利用这种非对称特性进行盲去噪,我们在噪声估计中提出了不对称损失以避免在噪声水平上出现低估误差。
- 给定像素 \(i\) 处估计的噪声等级 \(\hat \sigma(y_i)\)和真实值 \(\sigma(y_i)\)。当 \(\hat \sigma(y_i) < \sigma(y_i)\),我们应该强加更多惩罚。 因此,噪声等级估计子网络的不对称损失定义如下:

通过设定 \(0 < \alpha < 0.5\),,我们可以强加更多惩罚给低估误差。
另外,我们引入一个总体方差正则化项来限制 \(\hat \sigma(y_i)\) 的平滑性:

对于去噪子网络的输出 \(\hat x\),我们定义重构误差为:

网络的总损失即为以上三部分的求和:

训练过程
基于真实噪声模型合成的图片和真实的噪声图片被联合在一起对网络进行训练,来增强网络处理真实图像的泛化能力。
- 针对一个批次的合成图片,\(L_{rec} , L_{asymm},L_{TV}\) 三个损失都被计算来训练网络。
针对一个批次的真实,由于噪声等级不可知,因此只有,\(L_{rec} 和 L_{TV}\) 两个损失被计算来训练网络。
验证和结果
- 不同 \(\alpha\) 值的去噪结果对比如下图所示,可以看到,较小的 \(\alpha = 0.3\) 会对去除未知噪声并且保留图片的结构有所帮助。

另外,作者又对只用合成图片、只用真实图片和联合真实图片和合成图片三种情况进行了对比,进一步验证了联合训练的有效性。

最后,一些实验结果如下所示:


获取更多精彩,请关注「seniusen」!

Toward Convolutional Blind Denoising of Real Photographs的更多相关文章
- Paper | Toward Convolutional Blind Denoising of Real Photographs
目录 故事背景 建模现实噪声 CBDNet 非对称损失 数据库 实验 发表在2019 CVPR. 摘要 While deep convolutional neural networks (CNNs) ...
- CV code references
转:http://www.sigvc.org/bbs/thread-72-1-1.html 一.特征提取Feature Extraction: SIFT [1] [Demo program][SI ...
- CV codes代码分类整理合集 《转》
from:http://www.sigvc.org/bbs/thread-72-1-1.html 一.特征提取Feature Extraction: SIFT [1] [Demo program] ...
- {ICIP2014}{收录论文列表}
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...
- 计算机视觉与模式识别代码合集第二版one
Topic Name Reference code Feature Detection, Feature Extraction, and Action Recognition Space-Time I ...
- CVPR2018资源汇总
CVPR 2018大会将于2018年6月18~22日于美国犹他州的盐湖城(Salt Lake City)举办. CVPR2018论文集下载:http://openaccess.thecvf.com/m ...
- Paper | Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising
目录 故事背景 网络结构 BN和残差学习 拓展到其他任务 发表在2017 TIP. 摘要 Discriminative model learning for image denoising has b ...
- 论文翻译:2020_FLGCNN: A novel fully convolutional neural network for end-to-end monaural speech enhancement with utterance-based objective functions
论文地址:FLGCNN:一种新颖的全卷积神经网络,用于基于话语的目标函数的端到端单耳语音增强 论文代码:https://github.com/LXP-Never/FLGCCRN(非官方复现) 引用格式 ...
- 《DSLR-Quality Photos on Mobile Devices with Deep Convolutional Networks》研读笔记
<DSLR-Quality Photos on Mobile Devices with Deep Convolutional Networks>研读笔记 论文标题:DSLR-Quality ...
随机推荐
- Android学习笔记_5_文件操作
1.Activity提供了openFileOutput()方法可以用于把数据输出到文件中,具体的实现过程与在J2SE环境中保存数据到文件中是一样的. package com.example.servi ...
- 时空隧道FQ
给你推荐一款海外网站加速工具,为科技工作者.海外归国人员.企业团队.外贸工作者提供海外上网服务,永久免费. 国外网址:https://chrome.google.com/webstore/detail ...
- oracle权限配置
系统权限管理:1.系统权限分类:DBA: 拥有全部特权,是系统最高权限,只有DBA才可以创建数据库结构. RESOURCE:拥有Resource权限的用户只可以创建实体,不可以创建数据库结构. CON ...
- 【HDOJ 1272】小希的迷宫(并查集+无环图)
描述 上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走.但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道 ...
- 仿LordPE获取PE结构
乍一看LordPE一个小工具一般般,真的动手做起来才知道技术含量高的很. 当前只是获取到PE结构并打印,仅此而已. PE.h #pragma once #include <stdio.h> ...
- 使用Python对Csv文件操作
csv是Comma-Separated Values的缩写,是用文本文件形式储存的表格数据,比如如下的表格: 就可以存储为csv文件,文件内容是: No.,Name,Age,Score 1,mayi, ...
- Java中的文件和stream流的操作代码
1.Java中FileRead方法的运用代码及详解 package example2;import java.io.FileReader;import java.io.IOException;clas ...
- CentOS7下PHP7.2安装redis扩展
1.安装phpize(存在忽略) yum install php-devel 2.下载扩展源码包,直接用wget,一般放在 /usr/local/src wget https://github.com ...
- 在pythonanywhere上部署Django应用
参考:https://tutorial.djangogirls.org/zh/deploy/ 资料讲的很明了,仅在设置上做几点补充. 1.设置相对路径 import os BASE_DIR = os. ...
- STL 一些常用的STL函数(持续更新
先说一下 一边要用到算法的东西一般要加#include<algorithm>头文件 一.栈和队列 1 栈 :一种线性表 特点 后进先出 头文件 #include<stack&g ...