pandas DataFrame的创建方法
pandas DataFrame的增删查改总结系列文章:
在pandas里,DataFrame是最经常用的数据结构,这里总结生成和添加数据的方法:
①、把其他格式的数据整理到DataFrame中;
②在已有的DataFrame中插入N列或者N行。
1. 字典类型读取到DataFrame(dict to DataFrame)
假如我们在做实验的时候得到的数据是dict类型,为了方便之后的数据统计和计算,我们想把它转换为DataFrame,存在很多写法,这里简单介绍常用的几种:
方法一:直接使用pd.DataFrame(data=test_dict)即可,括号中的data=写不写都可以,具体如下:
test_dict = {'id':[1,2,3,4,5,6],'name':['Alice','Bob','Cindy','Eric','Helen','Grace '],'math':[90,89,99,78,97,93],'english':[89,94,80,94,94,90]}
#[1].直接写入参数test_dict
test_dict_df = pd.DataFrame(test_dict)
#[2].字典型赋值
test_dict_df = pd.DataFrame(data=test_dict)
那么,我们就得到了一个DataFrame,如下:

应该就是这个样子了。
方法二:使用from_dict方法:
test_dict_df = pd.DataFrame.from_dict(test_dict)
结果是一样的,不再重复贴图。
其他方法:如果你的dict变量很小,例如{'id':1,'name':'Alice'},你想直接写到括号里:
test_dict_df = pd.DataFrame({'id':1,'name':'Alice'}) # wrong style
这样是不行的,会报错ValueError: If using all scalar values, you must pass an index,是因为如果你提供的是一个标量,必须还得提供一个索引Index,所以你可以这么写:
test_dict_df = pd.DataFrame({'id':1,'name':'Alice'},pd.Index(range(1)))
后面的可以写多个pd.Index(range(3),就会生成三行一样的,是因为前面的dict型变量只有一组值,如果有多个,后面的Index必须跟前面的数据组数一致,否则会报错:
pd.DataFrame({'id':[1,2],'name':['Alice','Bob']},pd.Index(range(2))) #must be 2 in range function.
关于选择列,有些时候我们只需要选择dict中部分的键当做DataFrame的列,那么我们可以使用columns参数,例如我们只选择'id','name'列:
test_dict_df = pd.DataFrame(data=test_dict,columns=['id','name']) #only choose 'id' and 'name' columns
这里就不在多写了,后续变更颜色添加内容。
2. csv文件构建DataFrame(csv to DataFrame)
我们实验的时候数据一般比较大,而csv文件是文本格式的数据,占用更少的存储,所以一般数据来源是csv文件,从csv文件中如何构建DataFrame呢? txt文件一般也能用这种方法。
方法一:最常用的应该就是pd.read_csv('filename.csv')了,用 sep指定数据的分割方式,默认的是','
df = pd.read_csv('./xxx.csv')
如果csv中没有表头,就要加入head参数
3. 在已有的DataFrame中,增加N列或者N行
加入我们已经有了一个DataFrame,如下图:

3.1 添加列
此时我们又有一门新的课physics,我们需要为每个人添加这门课的分数,按照Index的顺序,我们可以使用insert方法,如下:
new_columns = [92,94,89,77,87,91]
test_dict_df.insert(2,'pyhsics',new_columns)
#test_dict_df.insert(2,'pyhsics',new_columns,allow_duplicates=True)
此时,就得到了添加好的DataFrame,需要注意的是DataFrame默认不允许添加重复的列,但是在insert函数中有参数allow_duplicates=True,设置为True后,就可以添加重复的列了,列名也是重复的:

3.2 添加行
此时我们又来了一位新的同学Iric,需要在DataFrame中添加这个同学的信息,我们可以使用loc方法:
new_line = [7,'Iric',99]
test_dict_df.loc[6]= new_line
但是十分注意的是,这样实际是改的操作,如果loc[index]中的index已经存在,则新的值会覆盖之前的值。
当然也可以把这些新的数据构建为一个新的DataFrame,然后两个DataFrame拼起来。可以用append方法,不过不太会用,提供一种方法:
test_dict_df.append(pd.DataFrame([new_line],columns=['id','name','physics']))
本想一口气把CURD全写完,没想到写到这里就好累。。。其他后续新开篇章在写吧。
相关代码:(https://github.com/dataSnail/blogCode/blob/master/python_curd/python_curd_create.ipynb)(在DataFrame中删除N列或者N行)(在DataFrame中查询某N列或者某N行)(在DataFrame中修改数据)
pandas DataFrame的创建方法的更多相关文章
- pandas DataFrame的修改方法
pandas DataFrame的增删查改总结系列文章: pandas DaFrame的创建方法 pandas DataFrame的查询方法 pandas DataFrame行或列的删除方法 pand ...
- pandas DataFrame的查询方法(loc,iloc,at,iat,ix的用法和区别)
pandas DataFrame的增删查改总结系列文章: pandas DaFrame的创建方法 pandas DataFrame的查询方法 pandas DataFrame行或列的删除方法 pand ...
- 把pandas dataframe转为list方法
把pandas dataframe转为list方法 先用numpy的 array() 转为ndarray类型,再用tolist()函数转为list
- pandas.DataFrame的groupby()方法的基本使用
pandas.DataFrame的groupby()方法是一个特别常用和有用的方法.让我们快速掌握groupby()方法的基础使用,从此数据分析又多一法宝. 首先导入package: import p ...
- pandas.DataFrame 中save方法
In [5]: frame.save('frame_pickle') ----------------------------------------------------------------- ...
- Pandas:DataFrame数据选择方法(索引)
#首先创建我们的Series对象,然后合并到dataframe对象里面去 import pandas as pd import numpy as np area=pd.Series({,,,}) po ...
- pandas DataFrame行或列的删除方法
pandas DataFrame的增删查改总结系列文章: pandas DaFrame的创建方法 pandas DataFrame的查询方法 pandas DataFrame行或列的删除方法 pand ...
- pandas.DataFrame学习系列1——定义及属性
定义: DataFrame是二维的.大小可变的.成分混合的.具有标签化坐标轴(行和列)的表数据结构.基于行和列标签进行计算.可以被看作是为序列对象(Series)提供的类似字典的一个容器,是panda ...
- pandas.DataFrame——pd数据框的简单认识、存csv文件
接着前天的豆瓣书单信息爬取,这一篇文章看一下利用pandas完成对数据的存储. 回想一下我们当时在最后得到了六个列表:img_urls, titles, ratings, authors, detai ...
随机推荐
- C#位数不足补零
C#位数不足补零:int i=10;方法1:Console.WriteLine(i.ToString("D5"));方法2:Console.WriteLine(i.ToString ...
- Page 由于代码已经过优化或者本机框架位于调用堆栈之上
Page.Response.Clear(); Page.Response.Write("<script type=\"text/javascript\& ...
- webpack——概念的引入
## 在网页中会引用哪些常见的静态资源?+ JS - .js .jsx .coffee .ts(TypeScript 类 C# 语言)+ CSS - .css .less .sass .scss+ I ...
- ABAP术语-Distribution Model
Distribution Model 原文:http://www.cnblogs.com/qiangsheng/archive/2008/01/25/1052434.html Model that d ...
- Mac系统配置php环境
[写在前面——叨叨叨] -_-#急着配环境的同志们可以绕道.最近学校的实验室里接了一个小项目——考勤刷卡系统,利用RFID在硬件层获取学生卡的ID,通过wifi传输至服务器,进行考勤信息存储,手机端获 ...
- JZOJ 5941. 乘
Sample Input Sample Input1: 4 3 9 6 5 8 7 7 Sample Output Sample Output1: 0做法(转自JZOJ):考虑 a 是定值, 而 b ...
- phpstorm代码提示不小心关了,如何开启
在phpstrom右下角单击如图 出现event log窗口 如果不是 单击切换取消节电模式即可开启代码提示.
- flask过滤器
过滤器的本质就是函数.有时候我们不仅仅只是需要输出变量的值,我们还需要修改变量的显示,甚至格式化.运算等等,而在模板中是不能直接调用 Python 中的某些方法,那么这就用到了过滤器. 过滤器的使用方 ...
- node 分层开发
app.js var express = require('express');var app = express();app.use('/',require('./control'));app.us ...
- (数据科学学习手札22)主成分分析法在Python与R中的基本功能实现
上一篇中我们详细介绍推导了主成分分析法的原理,并基于Python通过自编函数实现了挑选主成分的过程,而在Python与R中都有比较成熟的主成分分析函数,本篇我们就对这些方法进行介绍: R 在R的基础函 ...