下面给出Splay的实现方法(复杂度证明什么的知道是 nlogn 就可以啦)

首先对于一颗可爱的二叉查找树,是不能保证最坏nlogn的复杂度(可以想象把一个升序序列插入)

(二叉查找树保证左子树元素大小都小于根元素大小,根元素大小都小于右子树元素大小,且子树都是二叉查找树)

所以我们需要一些非常巧妙的旋转操作 (ratate)来优化这棵树(并让他改名叫Splay)

(图片顺序全反了2333)

1.节点 x 的父节点 y 是根节点。这时,如果 x 是 y 的左孩子,我们进行一次 Zig (右旋)操作;如果 x 是 y 的右孩子,则我们进行一次 Zag(左旋)操作。经过旋转,x 成 为二叉查找树 S 的根节点,调整结束。

2.节点x 的父节点y 不是根节点,y 的父节点为z,且x 与y 同时是各自父节点 的左孩子或者同时是各自父节点的右孩子。这时,我们进行一次Zig-Zig操作或者Zag-Zag操作。

3.节点x的父节点y不是根节点,y的父节点为z,x与y中一个是其父节点的左孩子 而另一个是其父节点的右孩子。这时,我们进行一次Zig-Zag操作或者Zag-Zig 操作

在这个过程中我们完成了让x上移为的操作

假设我们已经领悟了这些操作,我们再学习一个Splay(x)函数让他不断调用Rotate,将x节点旋转到根节点,这样就完成了对SPlay的维护(实现比较简单,可以看代码)

非常重要的性质是,Rotate和Splay函数使得维护Splay树的时候无论以哪个节点为根,这棵树都是比较"优美"的(长得比较均匀)

下面着重讨论一下splay上的各种操作:

1.Find()

这个比较简单,我们只需要不断比较然后去左儿子或者右儿子即可

2.Insert()

先去Splay里面找x,如果找到了的话直接x计数器++,没找到就新建一个节点

我们只要重点考虑一下怎么维护这棵树的其他性质(例如子树大小)

回到刚刚的Splay()操作,我们可以发现,每次旋转之后旋转的节点的子树大小是可更新的,且不受到之后的影响(具体可画图理解)

所以我们可以把这个节点(新建的或者以前的)直接Splay到根节点就完成了维护

3.Getmax/min

额...直接不停往左或者往右即可

4.Earse

先考虑删除根节点(因为其他节点都是能移到根节点的)根节点的删除对子树信息没影响,所以可以直接删

然后现在剩下了两棵小树,我们只需要让一棵树接到另一棵树上即可,而这等价于让一棵树根节点的一个儿子为空

我们可以把左子树的最大儿子转到根,这样左子树的右儿子就是空的了,把右子树根节点接过去即可

5.getkth

利用计数器往左往右查找即可

6.getrank

这个别想得太复杂,直接把他转到根节点,左子树大小+1就是排名

7.getpre/nxt(找前驱后继)

转到根节点,然后直接找左子树最大值(右子树最小值)

讲到这里基本操作就OK啦,看看代码就学会了SPlay!


 #include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define N 100010
#define which(x) (ls[fa[(x)]]==(x))
typedef long long ll;
using namespace std;
int n,root,idx,val[N],fa[N],ls[N],rs[N],sze[N],cnt[N];
int read()
{
int ret=,neg=;
char j=getchar();
for (;j>'' || j<'';j=getchar())
if (j=='-') neg=-;
for (;j>='' && j<='';j=getchar())
ret=ret*+j-'';
return ret*neg;
}
void upt(int x)//更新子树大小
{
sze[x]=sze[ls[x]]+sze[rs[x]]+cnt[x];
}
void rotate(int x)//旋转操作
{
//y是x父亲,z是y父亲,b是y的另一个儿子
int y=fa[x],z=fa[y],b=which(x)?rs[x]:ls[x],dir=which(y);
which(x)?(rs[x]=y,ls[y]=b):(ls[x]=y,rs[y]=b);
fa[y]=x,fa[b]=y,fa[x]=z;
if (z) dir?ls[z]=x:rs[z]=x;
upt(y),upt(x);//更新大小
}
void splay(int x)//把x旋转至根节点
{
//为了让树平衡,如果x和父亲同向,转fa[x]染红转x
//否则转两次x
while (fa[x])
{
if (fa[fa[x]])
if (which(x)==which(fa[x])) rotate(fa[x]);
else rotate(x);
rotate(x);
}
root=x;//现在x是根了
}
int getmin(int x)//找以x为根子树最小值节点编号
{
while (ls[x]) x=ls[x];
return x;
}
int getmax(int x)//找以x为根子树最大值节点编号
{
while (rs[x]) x=rs[x];
return x;
}
int find(int x)//找值为x的节点没有则返回
{
int cur=root,last=;
while (cur && val[cur]!=x)
{
last=cur;
if (x<val[cur]) cur=ls[cur];
else cur=rs[cur];
}
return cur?cur:last;
}
void insert(int x)//插入x
{
int cur=find(x);//找到
//如果已经存在x,把x++后splay成根节点
if (cur && val[cur]==x) return (void)(cnt[cur]++,sze[cur]++,splay(cur));
//如果不存在x就创造一个,然后splay
val[++idx]=x,fa[idx]=cur,cnt[idx]=sze[idx]=;
if (cur) x<val[cur]?ls[cur]=idx:rs[cur]=idx;
splay(idx);
}
void erase(int x)//删除值为x的节点
{
int cur=find(x);//保证存在
splay(cur);//先把x转到根
//如果x个数大于1,直接删掉就好
if (cnt[cur]>) cnt[cur]--,sze[cur]--;
//如果有一个儿子节点为空,直接让另一个为根,如果都是空就说明树为空
else if (!ls[cur] || !rs[cur]) root=ls[cur]+rs[cur],fa[root]=;
else
{
fa[ls[cur]]=;//x的左儿子没爸爸了
int u=getmax(ls[cur]);//让左子树最大值节点当新根节点,右子树的根节点是新根节点的右儿子
splay(u);
rs[u]=rs[cur],fa[rs[cur]]=u;
upt(u);
}
}
int getkth(int k)//寻找第k大,比较easy
{
int cur=root;
while (cur)
{
if (sze[ls[cur]]>=k) cur=ls[cur];
else if (sze[ls[cur]]+cnt[cur]>=k) return val[cur];
else k-=sze[ls[cur]]+cnt[cur],cur=rs[cur];
}
return val[cur];
}
int getrank(int x)//询问x排名
{
int cur=find(x);
splay(cur);
return sze[ls[cur]]+;
}
int getpre(int x)//找前驱
{
int cur=find(x);
if (val[cur]<x) return val[cur];
splay(cur);
return val[getmax(ls[cur])];
}
int getnxt(int x)//找后继
{
int cur=find(x);
if (val[cur]>x) return val[cur];
splay(cur);
return val[getmin(rs[cur])];
}
int main()
{
n=read();
for (int i=,op,x;i<=n;i++)
{
op=read(),x=read();
if (op==) insert(x);
if (op==) erase(x);
if (op==) printf("%d\n",getrank(x));
if (op==) printf("%d\n",getkth(x));
if (op==) printf("%d\n",getpre(x));
if (op==) printf("%d\n",getnxt(x));
}
return ;
}

BZOJ 3224 Tyvj 1728 普通平衡树 | Splay 板子+SPlay详细讲解的更多相关文章

  1. BZOJ 3224: Tyvj 1728 普通平衡树 or 洛谷 P3369 【模板】普通平衡树-Splay树模板题

    3224: Tyvj 1728 普通平衡树 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 22483  Solved: 10130[Submit][S ...

  2. BZOJ 3224: Tyvj 1728 普通平衡树

    3224: Tyvj 1728 普通平衡树 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 9629  Solved: 4091[Submit][Sta ...

  3. BZOJ 3224 TYVJ 1728 普通平衡树 [Treap树模板]

    3224: Tyvj 1728 普通平衡树 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 7390  Solved: 3122 [Submit][S ...

  4. BZOJ 3224: Tyvj 1728 普通平衡树 treap

    3224: Tyvj 1728 普通平衡树 Description 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作:1. 插入x数2. 删除x数(若有多个相同的数,因只删除 ...

  5. BZOJ 3224: Tyvj 1728 普通平衡树 vector

    3224: Tyvj 1728 普通平衡树 Description 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作:1. 插入x数2. 删除x数(若有多个相同的数,因只删除 ...

  6. BZOJ 3224: Tyvj 1728 普通平衡树(BST)

    treap,算是模板题了...我中间还一次交错题... -------------------------------------------------------------------- #in ...

  7. bzoj 3224: Tyvj 1728 普通平衡树 && loj 104 普通平衡树 (splay树)

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3224 思路: splay树模板题: 推荐博客:https://blog.csdn.ne ...

  8. bzoj 3224/Tyvj 1728 普通平衡树(splay)

    Description 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作:1. 插入x数2. 删除x数(若有多个相同的数,因只删除一个)3. 查询x数的排名(若有多个相同的数 ...

  9. BZOJ 3224 Tyvj 1728 普通平衡树模板

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3224 题目大意: 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以 ...

随机推荐

  1. es6几个新增语法的使用----数组

    //数组的累加方法 let arr=[1,2,3]; let sum=arr.reduce((prev,cur)=>{ return prev+cur; }) console.log(sum)/ ...

  2. JS高级. 01 复习JS基础

    1. JavaScript 包含: ____, ____, 和 ____. 2. JavaScript 的基本类型有 ____, ____, 和 ____. 3. JavaScript 的复合类型有 ...

  3. GDOI DAY1游记

    今天,是本蒟蒻的第一次参加GDOI,真激动! 今天,是GDOI第一天,昨天熬夜打代码,今天早上状态十分不好,于是... 进入了考场,叫我们自由打一会代码,于是...打了一坨AC机,重要的是错了(额.. ...

  4. go学习笔记-包处理

    包处理 package是go管理代码的重要工具,用于组织 Go 源代码,提供了更好的可重用性与可读性. 可见性 变量或函数名的首字母大写时,其就是可导出的,小写时则是不可导出的. 函数和变量的可访问性 ...

  5. 基于Ubuntu Server 16.04 LTS版本安装和部署Django之(五):测试项目

    基于Ubuntu Server 16.04 LTS版本安装和部署Django之(一):安装Python3-pip和Django 基于Ubuntu Server 16.04 LTS版本安装和部署Djan ...

  6. html5判断设备的动作

    相应的事件 deviceorientation事件提供设备的物理方向信息,表示为一系列本地坐标系的旋角. devicemotion事件提供设备的加速信息,表示为定义在设备上的坐标系中的卡尔迪坐标.其还 ...

  7. java---解析XML文件,通过反射动态将XML内容封装到一个类中

    本博客讲的XML解析,使用的是dom4j. 首先建立一个maven项目,在dom.xml中引入相应的dom4j的版本.作者下载的是热度很高的1.6.1版本.maven的使用在这里不做详细讲解. 引入成 ...

  8. Windows系统的高效使用

    1-WIndows10系统的入门使用 2-如何把系统盘的用户文件转移到其他盘 3-Windows装机软件一般有哪些? 4-Windows系统有哪些比较好用的下载器? 5-Windows系统中的播放器 ...

  9. Oracle修改表字段类型(number-->varchar2(len)),亲测可用

    思路: --新建临时表以存储正确的顺序create table A_2 as select (column1,colum2,……A表中的顺序) from A_1 ; --删除表A_1drop tabl ...

  10. 开发react的一些记录

    1.keyboard事件返回的对象SyntheticKeyboardEvent全部是null 解决方法:SyntheticKeyboardEvent的type,which,timeStamp可以得到你 ...