Brief Description

給定一棵樹, 判斷是否可以將其分成\(\frac{n}{k}\)個聯通塊, 其中每個聯通塊的大小均爲k.

Algorithm Design

我們有一個結論: k可行iff存在\(\frac{n}{k}\)個點, 以這些點爲根的子樹大小爲k或k的倍數.

讀者可以自行yy一下證明.

有了這個結論之後, 我們可以算出每個size, 用一個桶統計一下就好了.

Code

#include <algorithm>
#include <cctype>
#include <cstdio>
#include <cstring>
const int maxn = 1200000;
int fa[maxn], n, divide[maxn], size[maxn], f[maxn], tot = 0;
void fuck(int n) {
int i;
for (i = 1; i * i < n; i++) {
if (n % i == 0) {
divide[tot++] = i;
divide[tot++] = n / i;
}
}
if (i * i == n)
divide[tot++] = i;
std::sort(divide, divide + tot);
}
int main() {
// freopen("sdoi12_divide.in", "r", stdin);
// freopen("sdoi12_divide.out", "w", stdout);
scanf("%d", &n);
char ch = getchar();
int cnt = 0;
while (cnt < (n - 1)) {
int x = 0;
while (!isdigit(ch))
ch = getchar();
while (isdigit(ch)) {
x = x * 10 + ch - '0';
ch = getchar();
}
cnt++;
fa[cnt + 1] = x;
}
fuck(n);
for (int T = 1; T <= 10; T++) {
printf("Case #%d:\n", T);
memset(size, 0, sizeof(size));
memset(f, 0, sizeof(f));
for (int i = 2; i <= n; i++) {
if (T != 1) {
fa[i] = (fa[i] + 19940105) % (i - 1) + 1;
}
}
for (int i = n; i; i--)
size[fa[i]] += ++size[i];
for (int i = 1; i <= n; i++)
f[size[i]]++;
for (int i = 0; i < tot; i++) {
int tmp = 0;
for (int j = divide[i]; j <= n; j += divide[i])
tmp += f[j];
if (tmp == n / divide[i]) {
printf("%d\n", divide[i]);
}
}
}
}

[bzoj3004][SDOI2012]吊灯——樹形DP的更多相关文章

  1. Contest 高数题 樹的點分治 樹形DP

    高数题 HJA最近在刷高数题,他遇到了这样一道高数题.这道高数题里面有一棵N个点的树,树上每个点有点权,每条边有颜色.一条路径的权值是这条路径上所有点的点权和,一条合法的路径需要满足该路径上任意相邻的 ...

  2. BZOJ1017魔兽地图DotR 樹形DP

    @(BZOJ)[樹形DP, 三維DP] Description DotR (Defense of the Robots) Allstars是一个风靡全球的魔兽地图,他的规则简单与同样流行的地图DotA ...

  3. [bzoj3004] [SDOi2012]吊灯

    Description Alice家里有一盏很大的吊灯.所谓吊灯,就是由很多个灯泡组成.只有一个灯泡是挂在天花板上的,剩下的灯泡都是挂在其他的灯泡上的.也就是说,整个吊灯实际上类似于[b]一棵树[/b ...

  4. sql: T-SQL 统计计算(父子關係,樹形,分級分類的統計)

    ---sql: T-SQL 统计计算(父子關係,樹形,分級分類的統計) ---2014-08-26 塗聚文(Geovin Du) CREATE PROCEDURE proc_Select_BookKi ...

  5. P2351 [SDOi2012]吊灯

    P2351 [SDOi2012]吊灯 https://www.luogu.org/problemnew/show/P2351     题意: 一棵树,能否全部分成大小为x的联通块. 分析: 显然x是n ...

  6. 算法技巧讲解》关于对于递推形DP的前缀和优化

    这是在2016在长沙集训的第三天,一位学长讲解了“前缀和优化”这一技巧,并且他这一方法用的很6,个人觉得很有学习的必要. 这一技巧能使线性递推形DP的速度有着飞跃性的提升,从O(N2)优化到O(N)也 ...

  7. C. The Fair Nut and String 递推分段形dp

    C. The Fair Nut and String 递推分段形dp 题意 给出一个字符串选择一个序列\({p_1,p_2...p_k}\)使得 对于任意一个\(p_i\) , \(s[p_i]==a ...

  8. D. New Year Santa Network 解析(思維、DFS、組合、樹狀DP)

    Codeforce 500 D. New Year Santa Network 解析(思維.DFS.組合.樹狀DP) 今天我們來看看CF500D 題目連結 題目 給你一棵有邊權的樹,求現在隨機取\(3 ...

  9. D. Serval and Rooted Tree (樹狀DP)

    Codeforce 1153D Serval and Rooted Tree (樹狀DP) 今天我們來看看CF1153D 題目連結 題目 給一棵數,假設有$k$個葉節點,我們可以給葉節點分配$1$~$ ...

随机推荐

  1. popen和system问题

    popen和system问题 1. 问题描述 C的代码里面去调用命令启动一个shell脚本,分别使用了下面两个途径. 其中一个是: func1(cmd) { popen(cmd,type); pclo ...

  2. wpf显示视频,image控件闪屏,使用winform控件实现

    使用C#调用mingw的动态库实现视频识别软件,程序通过C++调用opencv打开视频,将图像的原始数据以rgb24的方式传递给C#端,C#通过构造图像对象给控件赋值的方式显示图片. 一开始使用wpf ...

  3. django类视图简单使用和源码解析

    django的类视图,CBV: 我们在开始接触django的时候,习惯于使用函数编写视图,即FBV.使用FBV时,我们只需要在路由匹配时,对应的路由下找到这个函数就可以了,这样做看似很和谐,但是有的时 ...

  4. memcached简单介绍及在django中的使用

    什么是memcached? Memcached是一个高性能的分布式的内存对象缓存系统,全世界有不少公司采用这个缓存项目来构建大负载的网站,来分担数据库的压力.Memcached是通过在内存里维护一个统 ...

  5. Week7 Teamework from Z.XML-任务分配

    任务分配 Z.XML任务初步分配新鲜出炉,请关注! 初步估计,我们的项目需要191小时.但是根据敏捷开发的方法,我们将在开发过程中根据情况迅速调整任务分配,以适应当时问题.

  6. centos7 centos6中 更改默认的系统启动级别

    centos6中更改默认的启动级别 方法: 1.vi /etc/inittab 2.找到id:x:initdefault:,我的系统是id:3:initdefault:,即默认以字符模式启动. 3.将 ...

  7. C#中的Stack的Peek操作,曝出异常

    我们在遍历一个栈的时候,有时候需要判断栈顶元素,用到了Peek元素,然后再用Pop元素,但是这个时候会出现一个逻辑错误, 当用Pop删除全部栈的元素时,再用Peek就会报错, InvalidOpera ...

  8. lintcode-111-爬楼梯

    111-爬楼梯 假设你正在爬楼梯,需要n步你才能到达顶部.但每次你只能爬一步或者两步,你能有多少种不同的方法爬到楼顶部? 样例 比如n=3,1+1+1=1+2=2+1=3,共有3中不同的方法 返回 3 ...

  9. lintcode-83-落单的数 II

    83-落单的数 II 给出3*n + 1 个的数字,除其中一个数字之外其他每个数字均出现三次,找到这个数字. 样例 给出 [1,1,2,3,3,3,2,2,4,1] ,返回 4 挑战 一次遍历,常数级 ...

  10. 搭建Lepus数据库监控系统

    一.  安装环境 系统环境:centos6.5 IP:192.168.30.242 hostname:vpn.org 软件:LAMP均已安装.(请确保这些正常安装,并能使用). 系统核心包:(摘自官方 ...