[bzoj3004][SDOI2012]吊灯——樹形DP
Brief Description
給定一棵樹, 判斷是否可以將其分成\(\frac{n}{k}\)個聯通塊, 其中每個聯通塊的大小均爲k.
Algorithm Design
我們有一個結論: k可行iff存在\(\frac{n}{k}\)個點, 以這些點爲根的子樹大小爲k或k的倍數.
讀者可以自行yy一下證明.
有了這個結論之後, 我們可以算出每個size, 用一個桶統計一下就好了.
Code
#include <algorithm>
#include <cctype>
#include <cstdio>
#include <cstring>
const int maxn = 1200000;
int fa[maxn], n, divide[maxn], size[maxn], f[maxn], tot = 0;
void fuck(int n) {
int i;
for (i = 1; i * i < n; i++) {
if (n % i == 0) {
divide[tot++] = i;
divide[tot++] = n / i;
}
}
if (i * i == n)
divide[tot++] = i;
std::sort(divide, divide + tot);
}
int main() {
// freopen("sdoi12_divide.in", "r", stdin);
// freopen("sdoi12_divide.out", "w", stdout);
scanf("%d", &n);
char ch = getchar();
int cnt = 0;
while (cnt < (n - 1)) {
int x = 0;
while (!isdigit(ch))
ch = getchar();
while (isdigit(ch)) {
x = x * 10 + ch - '0';
ch = getchar();
}
cnt++;
fa[cnt + 1] = x;
}
fuck(n);
for (int T = 1; T <= 10; T++) {
printf("Case #%d:\n", T);
memset(size, 0, sizeof(size));
memset(f, 0, sizeof(f));
for (int i = 2; i <= n; i++) {
if (T != 1) {
fa[i] = (fa[i] + 19940105) % (i - 1) + 1;
}
}
for (int i = n; i; i--)
size[fa[i]] += ++size[i];
for (int i = 1; i <= n; i++)
f[size[i]]++;
for (int i = 0; i < tot; i++) {
int tmp = 0;
for (int j = divide[i]; j <= n; j += divide[i])
tmp += f[j];
if (tmp == n / divide[i]) {
printf("%d\n", divide[i]);
}
}
}
}
[bzoj3004][SDOI2012]吊灯——樹形DP的更多相关文章
- Contest 高数题 樹的點分治 樹形DP
高数题 HJA最近在刷高数题,他遇到了这样一道高数题.这道高数题里面有一棵N个点的树,树上每个点有点权,每条边有颜色.一条路径的权值是这条路径上所有点的点权和,一条合法的路径需要满足该路径上任意相邻的 ...
- BZOJ1017魔兽地图DotR 樹形DP
@(BZOJ)[樹形DP, 三維DP] Description DotR (Defense of the Robots) Allstars是一个风靡全球的魔兽地图,他的规则简单与同样流行的地图DotA ...
- [bzoj3004] [SDOi2012]吊灯
Description Alice家里有一盏很大的吊灯.所谓吊灯,就是由很多个灯泡组成.只有一个灯泡是挂在天花板上的,剩下的灯泡都是挂在其他的灯泡上的.也就是说,整个吊灯实际上类似于[b]一棵树[/b ...
- sql: T-SQL 统计计算(父子關係,樹形,分級分類的統計)
---sql: T-SQL 统计计算(父子關係,樹形,分級分類的統計) ---2014-08-26 塗聚文(Geovin Du) CREATE PROCEDURE proc_Select_BookKi ...
- P2351 [SDOi2012]吊灯
P2351 [SDOi2012]吊灯 https://www.luogu.org/problemnew/show/P2351 题意: 一棵树,能否全部分成大小为x的联通块. 分析: 显然x是n ...
- 算法技巧讲解》关于对于递推形DP的前缀和优化
这是在2016在长沙集训的第三天,一位学长讲解了“前缀和优化”这一技巧,并且他这一方法用的很6,个人觉得很有学习的必要. 这一技巧能使线性递推形DP的速度有着飞跃性的提升,从O(N2)优化到O(N)也 ...
- C. The Fair Nut and String 递推分段形dp
C. The Fair Nut and String 递推分段形dp 题意 给出一个字符串选择一个序列\({p_1,p_2...p_k}\)使得 对于任意一个\(p_i\) , \(s[p_i]==a ...
- D. New Year Santa Network 解析(思維、DFS、組合、樹狀DP)
Codeforce 500 D. New Year Santa Network 解析(思維.DFS.組合.樹狀DP) 今天我們來看看CF500D 題目連結 題目 給你一棵有邊權的樹,求現在隨機取\(3 ...
- D. Serval and Rooted Tree (樹狀DP)
Codeforce 1153D Serval and Rooted Tree (樹狀DP) 今天我們來看看CF1153D 題目連結 題目 給一棵數,假設有$k$個葉節點,我們可以給葉節點分配$1$~$ ...
随机推荐
- 关于transition动画下,如果有fixed元素,渲染的奇葩问题
之前我们机票页面有生成一个低价日历,然后我们有一个需求就是滚动到那个月份,对应显示这个月,然后这个区域是fixed定位的,然后奇怪的事情发生了,就是低价日历的动画执行完后,修改页面的html却没有正常 ...
- Unity3d创建物体,寻找物体,加载物体,添加脚本
GetCreateObject: using UnityEngine; public class GetCreateObject : MonoBehaviour { GameObject emptyG ...
- 3.Linux 文件的压缩与打包
1.常用压缩打包命令 常用的压缩打包扩展名为如下: *.Z compress 程序压缩的文件,非常老旧了,不再细说 *.gz gzip 程序压缩的文件: *.bz2 bzip2 程序压缩的文件: *. ...
- 「日常训练」「小专题·USACO」 Wormholes(1-4)
题意 之后补充. 分析 这是一条很好的考察递归(或者说搜索)的题目.它的两个过程(建立初步解,验证)都用到了递归(或者说运用递归可以相当程度的减少代码量). 具体实现见代码.注意,为了使用std::p ...
- jmeter实例,如果有说明错误,请各位大神批评
首先我们打开jmeter,今天录制的脚本的是获取QQ头像,找了好久才找到可以免费试用的接口,如果有什么错误的地方,欢迎大家提出来,我会及时修改,也给自己一次进步的机会,希望大家不吝赐教!!!如果有什么 ...
- 调度器&负载均衡调度算法整理
一.Linux 调度器 Linux中进程调度器已经经过很多次改进了,目前核心调度器是在CFS(Completely Fair Scheduler),从2.6.23开始被作为默认调度器.用作者Ing ...
- Bellman_ford标准算法
Bellman_ford求最短路可以说这个算法在某些地方和dijkstra还是有些相似的,它们的松弛操作基本还是一样的只不过dijkstra以图中每个点为松弛点对其相连接的所有边进行松弛操作 而Bel ...
- nodeJs 调试异步程序追踪异步报错
DeprecationWarning: Calling an asynchronous function without callback is deprecated. 翻译: 不建议在不回调的情况下 ...
- [转]juery-zTree的基本用法
[简介] zTree 是利用 jQuery 的核心代码,实现一套能完成大部分常用功能的 Tree 插件 兼容 IE.FireFox.Chrome 等浏览器 在一个页面内可同时生成多个 Tree 实例 ...
- PokeCats开发者日志(五)
现在是PokeCats游戏开发的第八天的上午,来记录一下将PokeCats上传到360移动开放平台的过程. 首先点创建游戏. 会弹出这个东东. 个人只能创建免费游戏啊,TAT.算了,反 ...