[bzoj3004][SDOI2012]吊灯——樹形DP
Brief Description
給定一棵樹, 判斷是否可以將其分成\(\frac{n}{k}\)個聯通塊, 其中每個聯通塊的大小均爲k.
Algorithm Design
我們有一個結論: k可行iff存在\(\frac{n}{k}\)個點, 以這些點爲根的子樹大小爲k或k的倍數.
讀者可以自行yy一下證明.
有了這個結論之後, 我們可以算出每個size, 用一個桶統計一下就好了.
Code
#include <algorithm>
#include <cctype>
#include <cstdio>
#include <cstring>
const int maxn = 1200000;
int fa[maxn], n, divide[maxn], size[maxn], f[maxn], tot = 0;
void fuck(int n) {
int i;
for (i = 1; i * i < n; i++) {
if (n % i == 0) {
divide[tot++] = i;
divide[tot++] = n / i;
}
}
if (i * i == n)
divide[tot++] = i;
std::sort(divide, divide + tot);
}
int main() {
// freopen("sdoi12_divide.in", "r", stdin);
// freopen("sdoi12_divide.out", "w", stdout);
scanf("%d", &n);
char ch = getchar();
int cnt = 0;
while (cnt < (n - 1)) {
int x = 0;
while (!isdigit(ch))
ch = getchar();
while (isdigit(ch)) {
x = x * 10 + ch - '0';
ch = getchar();
}
cnt++;
fa[cnt + 1] = x;
}
fuck(n);
for (int T = 1; T <= 10; T++) {
printf("Case #%d:\n", T);
memset(size, 0, sizeof(size));
memset(f, 0, sizeof(f));
for (int i = 2; i <= n; i++) {
if (T != 1) {
fa[i] = (fa[i] + 19940105) % (i - 1) + 1;
}
}
for (int i = n; i; i--)
size[fa[i]] += ++size[i];
for (int i = 1; i <= n; i++)
f[size[i]]++;
for (int i = 0; i < tot; i++) {
int tmp = 0;
for (int j = divide[i]; j <= n; j += divide[i])
tmp += f[j];
if (tmp == n / divide[i]) {
printf("%d\n", divide[i]);
}
}
}
}
[bzoj3004][SDOI2012]吊灯——樹形DP的更多相关文章
- Contest 高数题 樹的點分治 樹形DP
高数题 HJA最近在刷高数题,他遇到了这样一道高数题.这道高数题里面有一棵N个点的树,树上每个点有点权,每条边有颜色.一条路径的权值是这条路径上所有点的点权和,一条合法的路径需要满足该路径上任意相邻的 ...
- BZOJ1017魔兽地图DotR 樹形DP
@(BZOJ)[樹形DP, 三維DP] Description DotR (Defense of the Robots) Allstars是一个风靡全球的魔兽地图,他的规则简单与同样流行的地图DotA ...
- [bzoj3004] [SDOi2012]吊灯
Description Alice家里有一盏很大的吊灯.所谓吊灯,就是由很多个灯泡组成.只有一个灯泡是挂在天花板上的,剩下的灯泡都是挂在其他的灯泡上的.也就是说,整个吊灯实际上类似于[b]一棵树[/b ...
- sql: T-SQL 统计计算(父子關係,樹形,分級分類的統計)
---sql: T-SQL 统计计算(父子關係,樹形,分級分類的統計) ---2014-08-26 塗聚文(Geovin Du) CREATE PROCEDURE proc_Select_BookKi ...
- P2351 [SDOi2012]吊灯
P2351 [SDOi2012]吊灯 https://www.luogu.org/problemnew/show/P2351 题意: 一棵树,能否全部分成大小为x的联通块. 分析: 显然x是n ...
- 算法技巧讲解》关于对于递推形DP的前缀和优化
这是在2016在长沙集训的第三天,一位学长讲解了“前缀和优化”这一技巧,并且他这一方法用的很6,个人觉得很有学习的必要. 这一技巧能使线性递推形DP的速度有着飞跃性的提升,从O(N2)优化到O(N)也 ...
- C. The Fair Nut and String 递推分段形dp
C. The Fair Nut and String 递推分段形dp 题意 给出一个字符串选择一个序列\({p_1,p_2...p_k}\)使得 对于任意一个\(p_i\) , \(s[p_i]==a ...
- D. New Year Santa Network 解析(思維、DFS、組合、樹狀DP)
Codeforce 500 D. New Year Santa Network 解析(思維.DFS.組合.樹狀DP) 今天我們來看看CF500D 題目連結 題目 給你一棵有邊權的樹,求現在隨機取\(3 ...
- D. Serval and Rooted Tree (樹狀DP)
Codeforce 1153D Serval and Rooted Tree (樹狀DP) 今天我們來看看CF1153D 題目連結 題目 給一棵數,假設有$k$個葉節點,我們可以給葉節點分配$1$~$ ...
随机推荐
- jmeter插件之VariablesFromCSV
项目需求: 由于该项目的特殊性,需要新建很多个jmx脚本,并且这些jmx的全局用户变量都一样,如果要修改的话,没法做到统一修改. 实现思路: 为了满足需求,在jemter官网找到该插件Variable ...
- Eclipse AmaterasUML 安装及使用
AmaterasUML 对于我来说,是一个非常好用的UML插件. 用它来将我写过的一些Android程序进行逆工程非常好用,只不过,不能体现出包,这是一个小小的遗憾. 这个是它的主页地址:http:/ ...
- 阴影效果的小 demo
早上没事干,感觉字体阴影的效果还是好看的,那么就来一个小demo吧! 1.这是html 简单的有一个标签或者盒子都可以 <div class="demo11">我爱考试 ...
- 用gradle编译任意结构的Android项目
## 需求 * 继续用`Eclipse`项目的结构,但是使用`gradle`编译,或者说任意的项目结构进行编译. ## 解决方案 1. Android studio的项目结构 1. Android S ...
- volatility的使用
volatility取证的使用----windows内存 简介 kali下默认安装 可以对windows,linux,mac,android的内存进行分析 内存文件的准备 Win2003SP2x86下 ...
- 使用testng.xml组织测试用例
测试用例类TeseNG.java: import org.openqa.selenium.By;import org.openqa.selenium.WebDriver;import org.open ...
- CSP201509-1:数组分段
引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的“计算机职业资格认证”考试,针对计算机软件开发. ...
- LeetCode 29——两数相除
1. 题目 2. 解答 2.1. 方法一 题目要求不能使用乘法.除法和除余运算,但我们可以将除法转移到对数域. \[ \frac{a}{b} = e^{\frac{lna}{lnb}} = e^{ln ...
- java连接mysql底层封装
package com.dao.db; import java.sql.Connection; import java.sql.SQLException; /** * 数据库连接层MYSQL * @a ...
- 【EasyNetQ】- 自动订阅者
从v0.7.1.30开始,EasyNetQ简单易用AutoSubscriber.你可以用它来轻松地扫描实现任何接口的类的特定组件IConsume<T>或IConsumeAsync<T ...