BZOJ 3994: [SDOI2015]约数个数和
3994: [SDOI2015]约数个数和
Time Limit: 20 Sec Memory Limit: 128 MB
Submit: 898 Solved: 619
[Submit][Status][Discuss]
Description

Input
输入文件包含多组测试数据。
Output
T行,每行一个整数,表示你所求的答案。
Sample Input
7 4
5 6
Sample Output
121
HINT
1<=N, M<=50000
Source
分析:
首先$d(x)$是一个积性函数,其次这个东西有一个很神奇的性质:
$d(nm)=\sum _{x\mid n} \sum _{y\mid m} [gcd(x,y)==1]$
证明如下:(懒得写了...公式打起来好麻烦...直接摘抄Sengxian的解释...QwQ)

于是接下来就直接莫比乌斯反演就好了...
$\sum _{x=1}^{n} \sum _{y=1}^{m} \left \lfloor \frac{n}{x} \right \rfloor \left \lfloor \frac{m}{y} \right \rfloor \sum _{d\mid x d\mid y}\mu (d)$
$=\sum _{d=1}^{x} \mu(d) \sum _{i=1}^{\frac {n}{d}} \left \lfloor \frac{n}{id} \right \rfloor \sum _{j=1}^{\frac {m}{d}} \left \lfloor \frac{m}{jd} \right \rfloor$
现在有一个有用的公式:
$\left \lfloor \frac{n}{xy} \right \rfloor=\left \lfloor \frac{ \left \lfloor \frac{n}{x} \right \rfloor }{y} \right \rfloor$
于是乎,我们定义$f(x)=\sum _{i=1}^{x} \left \lfloor \frac{x}{i} \right \rfloor$,
那么式子就变成酱紫:
$\sum _{d=1}^{n} \mu(d) f(\left \lfloor \frac{n}{d} \right \rfloor) f(\left \lfloor \frac{m}{d} \right \rfloor)$
时间复杂度:$O(N\sqrt{N}+T\sqrt{N})$
代码:
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
//by NeighThorn
using namespace std; const int maxn=50000+5; int n,m,cas,cnt,mu[maxn],pri[maxn],vis[maxn];
long long ans,f[maxn]; inline long long calc(int x){
long long res=0;
for(int i=1,r;i<=x;i=r+1){
r=x/(x/i);
res+=(x/i)*(r-i+1);
}
return res;
} inline void prework(void){
mu[1]=1;
for(int i=2;i<=50000;i++){
if(!vis[i])
vis[i]=1,pri[++cnt]=i,mu[i]=-1;
for(int j=1;j<=cnt&&i*pri[j]<=50000;j++){
vis[i*pri[j]]=1;
if(i%pri[j]==0){
mu[i*pri[j]]=0;break;
}
mu[i*pri[j]]=-mu[i];
}
}
for(int i=1;i<=50000;i++) mu[i]+=mu[i-1],f[i]=calc(i);
} signed main(void){
scanf("%d",&cas);prework();
while(cas--){
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);ans=0;
for(int i=1,r;i<=n;i=r+1){
r=min(n/(n/i),m/(m/i));
ans+=f[n/i]*f[m/i]*(mu[r]-mu[i-1]);
}
printf("%lld\n",ans);
}
return 0;
}
By NeighThorn
BZOJ 3994: [SDOI2015]约数个数和的更多相关文章
- BZOJ 3994: [SDOI2015]约数个数和 [莫比乌斯反演 转化]
2015 题意:\(d(i)\)为i的约数个数,求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m d(ij)\) \(ij\)都爆int了.... 一开始想容斥一下 ...
- 【刷题】BZOJ 3994 [SDOI2015]约数个数和
Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Output T ...
- ●BZOJ 3994 [SDOI2015]约数个数和
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3994 题解: 莫比乌斯反演 (先定义这样一个符号[x],如果x为true,则[x]=1,否则 ...
- bzoj 3994 [SDOI2015]约数个数和——反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3994 \( d(i*j)=\sum\limits_{x|i}\sum\limits_{y|j ...
- BZOJ 3994: [SDOI2015]约数个数和3994: [SDOI2015]约数个数和 莫比乌斯反演
https://www.lydsy.com/JudgeOnline/problem.php?id=3994 https://blog.csdn.net/qq_36808030/article/deta ...
- BZOJ.3994.[SDOI2015]约数个数和(莫比乌斯反演)
题目链接 \(Description\) 求\[\sum_{i=1}^n\sum_{j=1}^md(ij)\] \(Solution\) 有结论:\[d(nm)=\sum_{i|d}\sum_{j|d ...
- 【BZOJ 3994】3994: [SDOI2015]约数个数和(莫比乌斯反演)
3994: [SDOI2015]约数个数和 Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接 ...
- [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)
[BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...
- 【BZOJ】3994: [SDOI2015]约数个数和
题意: \(T(1 \le T \le 50000)\)次询问,每次给出\(n, m(1 \le n, m \le 50000)\),求\(\sum_{i=1}^{n} \sum_{j=1}^{m} ...
随机推荐
- 4,由spring展开的串烧
一.什么是Spring框架?Spring框架有哪些主要模块? Spring框架是一个为Java应用程序的开发提供了综合.广泛的基础性支持的Java平台.Spring帮助开发者解决了开发中基础性的问题, ...
- 使用Visual Studio 2017构建.Net Core的Docker镜像
1 Docker 镜像优化 微软在为开发人员生成 Docker 镜像时,提供以下三种主要方案: 用于开发 .NET Core 应用的 镜像 用于构建生成 .NET Core 应用的 镜像 用于运行 ...
- Ubuntu 手机 app开发学习0
# 相关网址 http://developer.ubuntu.com/zh-cn/apps/sdk/ 0. 环境搭建 首选需要一个Ubuntu 14.04操作系统.没啥好讲的,直接安装了一个虚拟机. ...
- java---解析XML文件,通过反射动态将XML内容封装到一个类中
本博客讲的XML解析,使用的是dom4j. 首先建立一个maven项目,在dom.xml中引入相应的dom4j的版本.作者下载的是热度很高的1.6.1版本.maven的使用在这里不做详细讲解. 引入成 ...
- SDOI2013森林
题面 主席树启发式合并,每次连边维护并查集,集合大小,求lca所需信息,合并两个树上的主席树, 重点看代码. #include <iostream> #include <algori ...
- C指针分析详解
局部变量和全局变量初始化区别: 局部变量,在未初始化情况下,初值为随机值.C规范对该初值并没有做规定,具体实现由编译器决定.如VC/VS等编译器,会将初始值值为0xCCCCCCCC, 而GCC等编译器 ...
- LeetCode 23 ——合并 K 个排序链表
1. 题目 2. 解答 2.1. 方法一 在 合并两个有序链表 的基础上,我们很容易想到第一种解法,首先我们将第一个链表和第二个链表合并成一个新的链表,然后再往后依次合并接下来的每个链表即可. 假设每 ...
- 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...
- ipfs02
IPFS-day02 其他常用操作 添加文件并用文件夹包裹 ipfs add xxx -w 把內容快取到本地,并提供给他人.官网文档 ipfs pin add QmT7TX5vGmFz86V8cDkP ...
- chromium源码阅读--图片处理
JavaScript 图像替换 JavaScript 图像替换技术检查设备能力,然后“做正确的事”. 您可以通过 window.devicePixelRatio 确定设备像素比,获取屏幕的宽度和高度, ...