D. Roads in Yusland
standard output

Mayor of Yusland just won the lottery and decided to spent money on something good for town. For example, repair all the roads in the town.

Yusland consists of n intersections connected by n - 1 bidirectional roads. One can travel from any intersection to any other intersection using only these roads.

There is only one road repairing company in town, named "RC company". Company's center is located at the intersection 1. RC company doesn't repair roads you tell them. Instead, they have workers at some intersections, who can repair only some specific paths. The i-th worker can be paid ci coins and then he repairs all roads on a path from ui to some vi that lies on the path from ui to intersection 1.

Mayor asks you to choose the cheapest way to hire some subset of workers in order to repair all the roads in Yusland. It's allowed that some roads will be repaired more than once.

If it's impossible to repair all roads print  - 1.

Input

The first line of the input contains two integers n and m (1 ≤ n, m ≤ 300 000) — the number of cities in Yusland and the number of workers respectively.

Then follow n−1 line, each of them contains two integers xi and yi (1 ≤ xi, yi ≤ n) — indices of intersections connected by the i-th road.

Last m lines provide the description of workers, each line containing three integers uivi and ci (1 ≤ ui, vi ≤ n, 1 ≤ ci ≤ 109). This means that the i-th worker can repair all roads on the path from vi to ui for ci coins. It's guaranteed that vi lies on the path from ui to 1. Note that viand ui may coincide.

Output

If it's impossible to repair all roads then print  - 1. Otherwise print a single integer — minimum cost required to repair all roads using "RC company" workers.

Example
input
6 5
1 2
1 3
3 4
4 5
4 6
2 1 2
3 1 4
4 1 3
5 3 1
6 3 2
output
8
Note

In the first sample, we should choose workers with indices 1, 3, 4 and 5,

some roads will be repaired more than once but it is OK. The cost will be equal to 2 + 3 + 1 + 2 = 8 coins.

————————————————————————————————————

这道题简单来讲就是给你一棵大小为n的树 再给你m条链 每条链有覆盖的范围(只能往上)

也就是u v v一定是u的祖先 链还有代价 求用最小的代价覆盖整颗树 如果无解输出-1

我的写法是一波贪心 从叶子节点开始计算 把从每个点开始的所有的边扔在这个点的平衡树上的

要求长度小的价值一定要小(所以插入的时候记得可以弹掉别的边)

这样之后我们选择的时候每个点我们贪心的选那个最短也就是价值最小的

然后所有的边打一波减的标记(这个可以搞个全局变量) 这样贪心以后用别的边就相当于用别的边

代替现在的这条边 这就保证了答案的正确性

然后我们从叶子节点开始算 如果没有边在他的平衡树里的话就是无解

不然就选一个最小的然后把他剩余的东西扔给他的父亲 这里记得把选的这条边的两端扔在一个并查集里

表示这些点标记过了以后不需要用 然后把自己的边扔给父亲的时候用一波启发式合并 保证复杂度

这样之后总的复杂度就是(nloglog)

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<set>
#define LL long long
const int M=3e5+;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
LL ans;
int n,m;
int f[M];
int find(int x){while(f[x]!=x) x=f[x]=f[f[x]]; return x;}
int first[M],cnt;
struct node{int to,next;}e[*M];
void ins(int a,int b){e[++cnt]=(node){b,first[a]}; first[a]=cnt;}
void insert(int a,int b){ins(a,b); ins(b,a);}
int deep[M],fa[M];
int dfs(int x,int last){
for(int i=first[x];i;i=e[i].next){
int now=e[i].to;
if(now==last) continue;
deep[now]=deep[x]+;
fa[now]=x;
dfs(now,x);
}
}
struct pos{
int d,w;
bool operator <(const pos &x)const{return d!=x.d?d>x.d:w>x.w;}
};
std::multiset<pos>tr[M];
typedef std::multiset<pos>::iterator IT;
void delet(int x,pos p,int s){
p.w+=s;IT it=tr[x].upper_bound(p);
if(it!=tr[x].begin()){
it--;
while(it->w>=p.w){
if(it==tr[x].begin()){tr[x].erase(it);break;}
IT now=it; --now;
tr[x].erase(it);
it=now;
}
}
it=tr[x].upper_bound(p);
if(it==tr[x].end()||it->w>p.w) tr[x].insert(p);
}
int dec[M];
void push_ans(int x){
for(int i=first[x];i;i=e[i].next){
int now=e[i].to;
if(now==fa[x]) continue;
push_ans(now);
if(tr[now].size()>tr[x].size()) tr[x].swap(tr[now]),std::swap(dec[x],dec[now]);
for(IT it=tr[now].begin();it!=tr[now].end();it++) delet(x,*it,dec[x]-dec[now]);
tr[now].clear();
}
while(tr[x].size()){
IT it=tr[x].begin();
if(it->d==deep[x]) tr[x].erase(it);
else break;
}
if(x!=&&f[x]==x){
if(tr[x].empty()) puts("-1"),exit();
IT it=tr[x].begin();
ans+=it->w-dec[x];
dec[x]=it->w;
int v=x; while(deep[v]>it->d) v=f[v]=find(fa[v]);
tr[x].erase(it);
}
}
int main(){
int x,y,w;
n=read(); m=read();
for(int i=;i<=n;i++) f[i]=i;
for(int i=;i<n;i++) x=read(),y=read(),insert(x,y);
deep[]=; dfs(,-);
for(int i=;i<=m;i++){
x=read(); y=read(); w=read();
pos p=(pos){deep[y],w};
delet(x,p,);
}
push_ans();
printf("%lld\n",ans);
return ;
}

codefoeces 671 problem D的更多相关文章

  1. Codeforces Round #352 (Div. 1) B. Robin Hood 二分

    B. Robin Hood 题目连接: http://www.codeforces.com/contest/671/problem/B Description We all know the impr ...

  2. Codeforces Round #352 (Div. 1) A. Recycling Bottles 暴力

    A. Recycling Bottles 题目连接: http://www.codeforces.com/contest/671/problem/A Description It was recycl ...

  3. HDUOJ-----2838Cow Sorting(组合树状数组)

    Cow Sorting Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  4. hdu 5090 Game with Pearls(最大匹配)

    Game with Pearls Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  5. 多校二 1003Maximum Sequence 模拟

    Maximum Sequence Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  6. HDU 6608:Fansblog(威尔逊定理)

    Fansblog Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Subm ...

  7. [LeetCode&Python] Problem 671. Second Minimum Node In a Binary Tree

    Given a non-empty special binary tree consisting of nodes with the non-negative value, where each no ...

  8. codefoeces problem 671D——贪心+启发式合并+平衡树

    D. Roads in Yusland Mayor of Yusland just won the lottery and decided to spent money on something go ...

  9. RQNOJ 671 纯洁的买卖:无限背包

    题目链接:https://www.rqnoj.cn/problem/671 题意: ALEJ要通过倒卖东西来赚钱. 现在他有m元经费. 有n种物品供他选择,每种物品数量无限. 第i件物品的买入价为c[ ...

随机推荐

  1. web框架与爬虫

    所有的web框架 http://www.cnblogs.com/wupeiqi/articles/5341480.html 爬虫技术 http://www.cnblogs.com/wupeiqi/ar ...

  2. 利用LD_PRELOAD进行hook

    原文地址:http://hbprotoss.github.io/posts/li-yong-ld_preloadjin-xing-hook.html 好久没玩hook这种猥琐的东西里,今天在Linux ...

  3. Java Set集合(HashSet、TreeSet)

    什么是HashSet?操作过程是怎么样的? 1.HashSet底层实际上是一个HashMap,HashMap底层采用了哈希表数据结构 2.哈希表又叫做散列表,哈希表底层是一个数组,这个数组中每一个元素 ...

  4. 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略

    原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...

  5. mingw编译opencv2.4.13问题记录

    为了在程序中用regex,升级了我的mingw,结果官网上的GCC版本都到6.3了,之前一直用4.8.换了编译器以后,对opencv2.4.10的引用就出了问题:undefined reference ...

  6. 功能规格说明书Version2

    此功能规格说明书是Week8 功能规格说明书的第二个版本, 版本1地址:http://www.cnblogs.com/Z-XML/p/3407687.html 此功能规格说明书是面向用户的,所以作者将 ...

  7. coredump分析

    首先通过命令 gdb freeswitch core.60954进入gdb. 这里freeswitch 是产生coredump的可执行应用,core.60954是应用产生的coredump文件. 然后 ...

  8. PHP判断类型的方法

    1.gettype():获取变量类型 2.is_array():判断变量类型是否为数组类型 3.is_double():判断变量类型是否为倍浮点类型 4.is_float():判断变量类型是否为浮点类 ...

  9. Java中WeakHashMap实现原理深究

    一.前言 我发现Java很多开源框架都使用了WeakHashMap,刚开始没怎么去注意,只知道它里面存储的值会随时间的推移慢慢减少(在 WeakHashMap 中,当某个“弱键”不再正常使用时,会被从 ...

  10. 【转】关于Java并发编程的总结和思考

    一.前言 就是想学习Java并发编程了,所以转载一下这篇认为还不错的博客~ 二.正文 编写优质的并发代码是一件难度极高的事情.Java语言从第一版本开始内置了对多线程的支持,这一点在当年是非常了不起的 ...