点此看题面

大致题意: 让你填完整一个\(16*16\)的数独。

解题思路

我们知道,数独问题显然可以用\(DLX\)解决。

考虑对于一个数独,它要满足的要求为:每个位置都必须有数每一行都必须有全部\(16\)个数每一列都必须有全部\(16\)个数每一个\(16\)宫格都必须有全部\(16\)个数

我们定义一个状态\((i,j,k)\),表示在第\(i\)行第\(j\)列填\(k\)。

对于一种填法它可以同时满足\(4\)种要求中各一种,因此如果把一种填法看作\(DLX\)中的一行,则每一行有\(4\)个\(1\)。

注意,对于已经给出数的位置,我们只能选择给出的那种填法, 否则, 可以选择任意数,有\(16\)种填法。

而对于这\(4\)种限制,每种都要求有\(256\)个,因此\(DLX\)共有\(1024\)列。

然后就可以按此跑\(DLX\)板子了。

具体实现详见代码。

代码

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
using namespace std;
char a[20][20];struct Operate {int x,y,v;}p[(1<<12)+5];
class DancingLinksX//DLX模板
{
private:
int tot,sz[(1<<10)+5],lnk[(1<<12)+5],res[(1<<8)+5];
struct node
{
int x,y,u,d,l,r;
I node(CI X=0,CI Y=0,CI U=0,CI D=0,CI L=0,CI R=0):x(X),y(Y),u(U),d(D),l(L),r(R){}
}O[(1<<14)+5];
I bool Dance(CI x)
{
#define Delete(x)\
{\
O[O[O[x].l].r=O[x].r].l=O[x].l;\
for(RI i=O[x].d;i^x;i=O[i].d) for(RI j=O[i].r;j^i;j=O[j].r)\
O[O[O[j].u].d=O[j].d].u=O[j].u,--sz[O[j].y];\
}
#define Regain(x)\
{\
for(RI i=O[x].d;i^x;i=O[i].d) for(RI j=O[i].r;j^i;j=O[j].r)\
O[O[j].u].d=O[O[j].d].u=j,++sz[O[j].y];\
O[O[x].l].r=O[O[x].r].l=x;\
}
if(!O[0].r)
{
RI i;for(i=1;i^x;++i) a[p[res[i]].x][p[res[i]].y]=p[res[i]].v;//更新到数独上
for(i=1;i<=16;++i) puts(a[i]+1);return 1;//输出
}
RI i,j,t=O[0].r;for(i=O[t].r;i;i=O[i].r) sz[t]>sz[i]&&(t=i);
Delete(t);for(i=O[t].d;i^t;i=O[i].d)
{
for(res[x]=O[i].x,j=O[i].r;j^i;j=O[j].r) Delete(O[j].y);
if(Dance(x+1)) return 1;
for(j=O[i].l;j^i;j=O[j].l) Regain(O[j].y);
}Regain(t);return 0;
}
public:
I void Init(CI x)
{
RI i;for(tot=x,i=0;i<=x;++i) O[i]=node(0,i,i,i,i-1,i+1);
O[O[0].l=x].r=0,memset(lnk,-1,sizeof(lnk)),memset(sz,0,sizeof(sz));
}
I void Insert(CI x,CI y)
{
++sz[y],O[++tot]=node(x,y,y,O[y].d),O[y].d=O[O[y].d].u=tot,
~lnk[x]?(O[tot].l=lnk[x],O[tot].r=O[lnk[x]].r,O[lnk[x]].r=O[O[lnk[x]].r].l=tot)
:(lnk[x]=O[tot].l=O[tot].r=tot);
}
I void Solve() {Dance(1);}
}DLX;
int main()
{
RI Ttot,i,j,k,cnt,t=0;W(~scanf("%s",a[1]+1))
{
#define P(x,y) ((x-1<<4)+y)
#define T(x,y) (((x-1>>2)<<2)+(y+3>>2))
t++&&putchar('\n');//注意输出空行
for(DLX.Init(1<<10),cnt=0,i=2;i<=16;++i) scanf("%s",a[i]+1);
for(i=1;i<=16;++i) for(j=1;j<=16;++j) for(k=1;k<=16;++k)
{
if(a[i][j]^'-'&&(a[i][j]&31)^k) continue;//对于已经给定的数,必须按这种填法填
p[++cnt].x=i,p[cnt].y=j,p[cnt].v=64|k,//存下这种填法
DLX.Insert(cnt,P(i,j)),DLX.Insert(cnt,P(i,k)+256),//每一位要有数、每一行要有全部数
DLX.Insert(cnt,P(j,k)+512),DLX.Insert(cnt,P(T(i,j),k)+768);//每一列要有全部数、每一16宫格要有全部数
}DLX.Solve();
}return 0;
}

【UVA1309】Sudoku(DLX)的更多相关文章

  1. NoSQL之【MongoDB】学习(三):配置文件说明

    摘要: 继上一篇NoSQL之[MongoDB]学习(一):安装说明 之后,知道了如何安装和启动MongoDB,现在对启动时指定的配置文件(mongodb.conf)进行说明,详情请见官方. 启动Mon ...

  2. 【操作系统】进程间通信(C#)

    原文:[操作系统]进程间通信(C#) 08年9月入学,12年7月毕业,结束了我在软件学院愉快丰富的大学生活.此系列是对四年专业课程学习的回顾,索引参见:http://blog.csdn.net/xia ...

  3. 【Luogu3444】ORK-Ploughing(贪心)

    [Luogu3444]ORK-Ploughing(贪心) 题面 Luogu 题解 我们知道,如果我们选定了以横向为主,或者纵向为主, 那么就有尽可能减少另一个方向上耕地的次数 所以分开贪心,但是本质相 ...

  4. 【BZOJ1997】Planar(2-sat)

    [BZOJ1997]Planar(2-sat) 题面 BZOJ 题解 很久没做过\(2-sat\)了 今天一见,很果断的就来切 这题不难呀 但是有个玄学问题: 平面图的性质:边数\(m\)的最大值为\ ...

  5. 【Luogu1337】平衡点(模拟退火)

    [Luogu1337]平衡点(模拟退火) 题面 洛谷 题解 和BZOJ3680吊打XXX是一样的.. 但是数据很强呀.. 疯狂调参 各种WA... 很无奈呀.... #include<iostr ...

  6. 【BZOJ1996】合唱队(动态规划)

    [BZOJ1996]合唱队(动态规划) 题面 BZOJ 题解 很容易的一道题 因为每个人不是放在了左边就是放在了右边 所以每次放好的人必定是原序列的一个子串 所以,很容易想到区间\(dp\) 设\(f ...

  7. 【BZOJ1899】午餐(动态规划)

    [BZOJ1899]午餐(动态规划) 题面 BZOJ 题解 我太弱了 这种\(dp\)完全做不动.. 首先,感性理解一些 如果所有人都要早点走, 那么,吃饭时间长的就先吃 吃饭时间短的就晚点吃 所以, ...

  8. 【BZOJ1040】骑士(动态规划)

    [BZOJ1040]骑士(动态规划) 题面 BZOJ 题解 对于每一组厌恶的关系 显然是连边操作 如果是一棵树的话 很显然的树型\(dp\) 但是,现在相当于有很多个基环 也就是在一棵树的基础上再加了 ...

  9. 【BZOJ3527】力(FFT)

    [BZOJ3527]力(FFT) 题面 Description 给出n个数qi,给出Fj的定义如下: \[Fj=\sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{ ...

随机推荐

  1. MySQL 小抄

    1. 登录 mysql - u root -pEnter Password: 2. 查询端口 mysql> show global variables like "port" ...

  2. http和web缓存

    1.http的缓存类型   缓 存对于一个网站来说非常重要,可以提高网站性能,减少冗余的数据传输,增加服务器负担,web存储则给浏览器提供了更加强大的保存文件的接口.关于web下的http缓存类型比较 ...

  3. (转)SSH服务详解

    SSH服务详解 原文:http://www.cnblogs.com/clsn/p/7711494.html 第1章 SSH服务1.1 SSH服务协议说明SSH 是 Secure Shell Proto ...

  4. (转) Linux Shell经典实例解析

    原文:http://blog.csdn.net/yonggeit/article/details/72779955 该篇博客作为对之前Linux Shell常用技巧和高级技巧系列博客的总结,将以Ora ...

  5. 一些Andoid studio常用的快捷键

    常用快捷键    Android Studio是基于IntelliJ IDEA的,我们都知道,IDEA是一个很方便很好用的IDE,其中有许多快捷键,但是太多快捷键我们也记不住. 其实,我们可以记住几个 ...

  6. python移动多个子文件中的文件到一个文件夹

    import os import os.path import shutil def listDir(dirTemp): if None == dirTemp: return global nameL ...

  7. SVM之Python实现

    SVM Python实现 Python实现SVM的理论知识 SVM原始最优化问题: \[ min_{w,b,\xi}{1\over{2}}{||w||}^2 + C\sum_{i=1}^m\xi^{( ...

  8. NPOI之C#下载Excel

    Java中这个类库叫POI,C#中叫NPOI,很多从Java一直到.Net平台的类库为了区别大部分都是在前面加个N,比如Hibernate和NHibernate. npoi下载地址 一.使用NPOI下 ...

  9. dubbo-admin网页管理控制台

    由于近段时间在看dubbo,网上找到的这个war包发布到tomcat报错,故从git(https://github.com/apache/incubator-dubbo-ops)上重新下载编译了版本 ...

  10. 数组和矩阵(2)——Reshape the Matrix

    In MATLAB, there is a very useful function called 'reshape', which can reshape a matrix into a new o ...