[问题2014A05] 解答
[问题2014A05] 解答
(1) 将矩阵 \(A\) 分解为两个矩阵的乘积:
\[A=\begin{bmatrix} 1 & 1 & \cdots & 1 & 1 \\ x_1 & x_2 & \cdots & x_n & x \\ \vdots & \vdots & & \vdots & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} & x^{n-1} \\ x_1^n & x_2^n & \cdots & x_n^n & x^n \end{bmatrix} \begin{bmatrix} 1 & x_1 & \cdots & x_1^{n-1} & 0 \\ 1 & x_2 & \cdots & x_2^{n-1} & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & x_n & \cdots & x_n^{n-1} & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix}.\]
由矩阵乘积的行列式等于行列式的乘积可得
\[|A|=\begin{vmatrix} 1 & 1 & \cdots & 1 & 1 \\ x_1 & x_2 & \cdots & x_n & x \\ \vdots & \vdots & & \vdots & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} & x^{n-1} \\ x_1^n & x_2^n & \cdots & x_n^n & x^n \end{vmatrix} \begin{vmatrix} 1 & x_1 & \cdots & x_1^{n-1} & 0 \\ 1 & x_2 & \cdots & x_2^{n-1} & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & x_n & \cdots & x_n^{n-1} & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{vmatrix}\]
\[=(x-x_1)(x-x_2)\cdots(x-x_n)\prod_{1\leq i<j\leq n}(x_j-x_i)^2.\,\,\Box\]
(2) 记 \(D_m\) 为所求的行列式, 我们来求 \(D_m\) 的递推式. 显然, \(D_1=|A|\). 一般的, 我们可以选择第 \(1\) 行, 第 \(m+1\) 行, \(\cdots\), 第 \((n-1)m+1\) 行进行 Laplace 展开, 注意到包含于这 \(n\) 行可能非零的 \(n\) 阶子式只有一个, 即为 \(|A|\), 其对应的代数余子式即为 \(D_{m-1}\). 因此, 我们有 \[D_m=|A|\cdot D_{m-1},\] 从而 \(D_m=|A|^m\). \(\Box\)
[问题2014A05] 解答的更多相关文章
- 精选30道Java笔试题解答
转自:http://www.cnblogs.com/lanxuezaipiao/p/3371224.html 都 是一些非常非常基础的题,是我最近参加各大IT公司笔试后靠记忆记下来的,经过整理献给与我 ...
- 精通Web Analytics 2.0 (8) 第六章:使用定性数据解答”为什么“的谜团
精通Web Analytics 2.0 : 用户中心科学与在线统计艺术 第六章:使用定性数据解答"为什么"的谜团 当我走进一家超市,我不希望员工会认出我或重新为我布置商店. 然而, ...
- 【字符编码】Java字符编码详细解答及问题探讨
一.前言 继上一篇写完字节编码内容后,现在分析在Java中各字符编码的问题,并且由这个问题,也引出了一个更有意思的问题,笔者也还没有找到这个问题的答案.也希望各位园友指点指点. 二.Java字符编码 ...
- spring-stutrs求解答
这里贴上applicationContext里的代码: <?xml version="1.0" encoding="UTF-8"?> <bea ...
- JavaScript Bind()趣味解答 包懂~~
首先声明一下,这个解答是从Segmentfault看到的,挺有意思就记录下来.我放到最下面: bind() https://developer.mozilla.org/zh-CN/docs/Web/J ...
- CMMI4级实践中的5个经典问题及解答
这五个问题相当经典而且比较深,需要做过CMMI4.5级的朋友才能看懂这些问题.这5个问题是一位正在实践CMMI4级的朋友提出来的,而解答则是我的个人见解. 五个疑问是: A.流程,子流程部分不明白 ...
- 海边直播目标2017全国初中数学竞赛班课堂测试题解答-The Final
1. 设函数 $f(x) = 2^x(ax^2 + bx + c)$ 满足等式 $f(x+1) - f(x) = 2^x\cdot x^2$, 求 $f(1)$. 解答: 由 $f(x) = 2^x( ...
- 知乎大牛的关于JS解答
很多疑惑一扫而空.... http://www.zhihu.com/question/35905242?sort=created JS的单线程,浏览器的多进程,与CPU,OS的对位. 互联网移动的起起 ...
- [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)
[问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供) (1) 当 \(a=0\) 时,这是高代书复习题一第 33 题,可用升阶法和 Vander Monde 行列式来求解,其结果为 \[ ...
随机推荐
- jquery 温故而知新 animate动画的一些坑
注意1,只有hover事件后才能紧跟着第二个回调函数(mouseleave),尽量还是不使用mouseover事件了 注意2,.stop(false,true); 结束动画,在动画队列中删除自己,并且 ...
- pomotime_v1.7.2 番茄软件完全教程
资源下载:http://download.csdn.net/detail/xz_legendx/8546211 番茄规则和技巧 一个番茄时间共30分钟,包括25分钟的工作时间和5分钟的休息时间. ...
- html基本的内容
1.表现各标签的特征 <img>中的src(source)即为属性 属性都是以"属性名 = 值"的形式出现 属性的值建议用引号括起来 属性建议均以键值对的形式括起来 一 ...
- do put in ruby
apikey: XO.apikeys.cms, data: { favoriteItems: [{ UserId: SaveToFavoriteVar.content.FavoriteItem.Use ...
- 理解Bitcode
用Xcode 7 beta 3在真机(iOS 8.3)上运行一下我们的工程,结果发现工程编译不过.看了下问题,报的是以下错误: 1 ld: ‘/Users/**/Framework/SDKs/Poly ...
- HAProxy 实践(一)
运行环境 OS: Deiban 7 软件:haproxy 1.5.8 HTTP Server: 192.168.99.1:8520 192.168.99.1:8530 192.168.99.1:854 ...
- Theos
一.安装 1.配置环境变量 (每次 terminal 重新启动需要配置) $ export THEOS=/opt/theos 2.下载 Theos $ sudo git clone git://git ...
- 《linux内核设计与实现》读书笔记第三章
第3章 进程管理 3.1 进程 1.进程 进程就是处于执行期的程序. 进程包括: 可执行程序代码 打开的文件 挂起的信号 内核内部数据 处理器状态 一个或多个具有内存映射的内存地址空间 一个或多个执行 ...
- iOS系统提供开发环境下命令行编译工具:xcodebuild
iOS系统提供开发环境下命令行编译工具:xcodebuild[3] xcodebuild 在介绍xcodebuild之前,需要先弄清楚一些在XCode环境下的一些概念[4]: Workspace:简单 ...
- LeetCode Shortest Distance from All Buildings
原题链接在这里:https://leetcode.com/problems/shortest-distance-from-all-buildings/ 题目: You want to build a ...