4653: [Noi2016]区间

Time Limit: 60 Sec  Memory Limit: 256 MB
Submit: 107  Solved: 70
[Submit][Status][Discuss]

Description

在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn]。现在要从中选出 m 个区间,使得这 m个区间共同包含至少一个位置。换句话说,就是使得存在一个 x,使得对于每一个被选中的区间 [li,ri],都有 li≤x≤ri。
对于一个合法的选取方案,它的花费为被选中的最长区间长度减去被选中的最短区间长度。区间 [li,ri] 的长度定义为 ri−li,即等于它的右端点的值减去左端点的值。
求所有合法方案中最小的花费。如果不存在合法的方案,输出 −1。

Input

第一行包含两个正整数 n,m用空格隔开,意义如上文所述。保证 1≤m≤n 
接下来 n行,每行表示一个区间,包含用空格隔开的两个整数 li 和 ri 为该区间的左右端点。
N<=500000,M<=200000,0≤li≤ri≤10^9

Output

只有一行,包含一个正整数,即最小花费。

Sample Input

6 3
3 5
1 2
3 4
2 2
1 5
1 4

Sample Output

2

HINT

Source

Solution

比较简单的题

显然先对区间左右端点进行离散化

考虑按区间长度排序,用双指针统计答案

排序后,由于单调性,答案显然是两段连续的区间,那么扫一遍区间,判断多个区间是否有交M即可

用数据结构去维护多个区间求交,显然线段树即可

基本的操作:区间修改,总体查询最大

然后每次到达M更新答案即可

Code

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define MAXN 500100
int N,M,ls[MAXN<<],tp,top;
struct QNode{int l,r,sz;}q[MAXN<<];
struct SegmentTreeNode{int l,r,tag,maxx;}tree[MAXN<<];
inline void Update(int now) {tree[now].maxx=max(tree[now<<].maxx,tree[now<<|].maxx);}
void Pushdown(int now)
{
if (!tree[now].tag) return;
int D=tree[now].tag; tree[now].tag=;
tree[now<<].maxx+=D; tree[now<<|].maxx+=D;
tree[now<<].tag+=D; tree[now<<|].tag+=D;
}
void Change(int now,int l,int r,int L,int R,int D)
{
if (L<=l && R>=r) {tree[now].tag+=D; tree[now].maxx+=D; return;}
Pushdown(now);
int mid=(l+r)>>;
if (L<=mid) Change(now<<,l,mid,L,R,D);
if (R>mid) Change(now<<|,mid+,r,L,R,D);
Update(now);
}
bool cmp(QNode A,QNode B) {return A.sz<B.sz;}
int Solve()
{
int re=0x7fffffff,dfn=;
sort(q+,q+N+,cmp);
for (int i=; i<=N; i++)
{
while (tree[].maxx<M)
{
if (dfn==N) return re;
dfn++;
Change(,,top,q[dfn].l,q[dfn].r,);
}
re=min(q[dfn].sz-q[i].sz,re);
Change(,,top,q[i].l,q[i].r,-);
}
return re;
}
int main()
{
N=read(),M=read();
for (int i=; i<=N; i++)
ls[++tp]=q[i].l=read(),ls[++tp]=q[i].r=read(),q[i].sz=q[i].r-q[i].l;
sort(ls+,ls+tp+);
ls[top]=-;
for (int i=; i<=tp; i++) if (ls[i]!=ls[top]) ls[++top]=ls[i];
for (int i=; i<=N; i++)
q[i].l=lower_bound(ls+,ls+top+,q[i].l)-ls,q[i].r=lower_bound(ls+,ls+top+,q[i].r)-ls;
int Ans=Solve();
printf("%d\n",Ans==0x7fffffff? -:Ans);
return ;
}

由于同步赛的时候就想到了正解,并且打了一遍,放学前花10分钟又码了一遍...

一开始线段树写了个建树...最后几个点RE成狗.....然后回到最初辣鸡版本,把建树扔了就轻松A了....

被DCrusher大爷嘲讽了一顿

同步赛好像也是这么写的,应该能A?

【BZOJ-4653】区间 线段树 + 排序 + 离散化的更多相关文章

  1. BZOJ4653 [NOI2016]区间 [线段树,离散化]

    题目传送门 区间 Description 在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn].现在要从中选出 m 个区间,使得这 m个区间共同包含至少一个位置.换句话说,就 ...

  2. BZOJ 3110 ZJOI 2013 K大数查询 树套树(权值线段树套区间线段树)

    题目大意:有一些位置.这些位置上能够放若干个数字. 如今有两种操作. 1.在区间l到r上加入一个数字x 2.求出l到r上的第k大的数字是什么 思路:这样的题一看就是树套树,关键是怎么套,怎么写.(话说 ...

  3. hdu1542 Atlantis (线段树+扫描线+离散化)

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  4. [BZOJ 4025]二分图(线段树分治+带边权并查集)

    [BZOJ 4025]二分图(线段树分治+带边权并查集) 题面 给出一个n个点m条边的图,每条边会在时间s到t出现,问每个时间的图是否为一个二分图 \(n,m,\max(t_i) \leq 10^5\ ...

  5. hdu 1540 Tunnel Warfare (区间线段树(模板))

    http://acm.hdu.edu.cn/showproblem.php?pid=1540 Tunnel Warfare Time Limit: 4000/2000 MS (Java/Others) ...

  6. BZOJ.4184.shallot(线段树分治 线性基)

    BZOJ 裸的线段树分治+线性基,就是跑的巨慢_(:з」∠)_ . 不知道他们都写的什么=-= //41652kb 11920ms #include <map> #include < ...

  7. 【bzoj3110】[Zjoi2013]K大数查询 权值线段树套区间线段树

    题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数 ...

  8. 【Luogu】P2824排序(二分答案+线段树排序)

    题目链接 震惊!两个线段树和一个线段树竟是50分的差距! 本题可以使用二分答案,二分那个位置上最后是什么数.怎么验证呢? 把原序列改变,大于等于mid的全部变成1,小于mid的全部变成0,之后线段树排 ...

  9. BZOJ.4653.[NOI2016]区间(线段树)

    BZOJ4653 UOJ222 考虑二分.那么我们可以按区间长度从小到大枚举每个区间,对每个区间可以得到一个可用区间长度范围. 我们要求是否存在一个点被这些区间覆盖至少\(m\)次.这可以用线段树区间 ...

随机推荐

  1. Centos6 修改max user processes limits

    ulimit:显示(或设置)用户可以使用的资源的限制(limit),这限制分为软限制(当前限制)和硬限制(上限),其中硬限制是软限制的上限值,应用程序在运行过程中使用的系统资源不超过相应的软限制,任何 ...

  2. 3098: Hash Killer II

    3098: Hash Killer II Time Limit: 5 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1219  Solved:  ...

  3. android values目录的读取优先级

    android项目新建时会有一个values目录(高版本会增加values-v11,values-v14目录),该目录用于存放显示相的配置数据的定义文件,如strings.xml, style.xml ...

  4. eval的对于验证数学公式的用处

    var a=10,b=20; var s=a+b+((a/b)+(a+(a-b)))+(11)/a; var r=eval(s); console.log(r); 只要不报错,说明公式正确, 报错公式 ...

  5. YII框架概念与安装

    Yii概念: YII安装:      下载最版本http://www.framework.com      解压至访问目录下 直接打开advanced/init.bat文件输入0之后输入yes 打不开 ...

  6. 用python代码做configure文件

    在lua中,我一直用lua作为config文件,或者承载数据的文件 - 好处是lua本身就很好阅读,然后无需额外写解析的代码,还支持在configure文件中读环境变量,条件判断等,方便又强大! (在 ...

  7. Expression Blend4经验分享:文字公告无缝循环滚动效果

    这次分享一个类似新闻公告板的无缝循环滚动效果,相信很多项目都会应用到这个效果.之前我也百度了一下,网上的一些Silverlight的文字或图片滚动效果,都是一次性滚动的,如果要做到无缝循环滚动,多数要 ...

  8. Canvas之蛋疼的正方体绘制体验

    事情的起因 之前写了篇谈谈文字图片粒子化 I,并且写了个简单的demo -> 粒子化.正当我在为写 谈谈文字图片粒子化II 准备demo时,突然想到能不能用正方体代替demo中的球体粒子.我不禁 ...

  9. Code Review 五问五答

    Code Review 是什么? Code Review即代码审查,程序猿相互审核对方的代码. Code Review能获得什么好处? 提高代码可维护性 你写的代码不再只有编译器看了,你得写出审核人能 ...

  10. 基于FPGA的电压表与串口通信(上)

    实验原理 该实验主要为利用TLC549采集模拟信号,然后将模拟信号的数字量通过串口发送到PC上上位机进行显示,使用到的TLC549驱动模块在进阶实验已经使用到了,串口模块在基础实验也已经使用到了,本实 ...