Lucas' theorem

In number theory, Lucas's theorem expresses the remainder of division of the binomial coefficient by a prime number p in terms of the base p expansions of the integers m and n.     ----wiki



##表达式

对于非负整数mn和素数p,如果有:

![](http://7xrn7f.com1.z0.glb.clouddn.com/16-3-11/46939983.jpg)

则有下式成立:

![](http://7xrn7f.com1.z0.glb.clouddn.com/16-3-11/30039157.jpg)



##牛刀小试
题目链接:[hdu-3037](http://acm.hdu.edu.cn/showproblem.php?pid=3037)
题目大意:求在n棵树上摘不超过m颗豆子的方案,结果对p取模。
解题思路:
首先,n棵树上摘m课豆子的方案数相当于从n个数中可重复的选m个数的组合数,为。那么现在就是求


代码:
```c++
#include
#include
#include
using namespace std;
typedef long long LL;
const int N = 100001;
LL mod;
LL jc[N];

LL quick(LL a, LL b)

{

LL c = 1;

while(b)

{

if(b&1) c = c * a % mod;

b >>= 1;

a = a * a % mod;

}

return c;

}

LL NY(LL a)

{

return quick(a, mod-2);

}

void init()

{

jc[0] = 1;

for(LL i=1; i<mod; i++)

{

jc[i] = i * jc[i-1] % mod;

}

}

LL C(LL n, LL m)

{

if(n < m) return 0;

return jc[n] % mod * NY(jc[m]) % mod * NY(jc[n-m]) % mod;

}

LL Lucas(LL n, LL m)

{

if(!m) return 1;

return Lucas(n/mod, m/mod) * C(n%mod, m%mod) % mod;

}

int main()

{

LL n, m;

int t;

scanf("%d", &t);

while(t--)

{

scanf("%I64d %I64d %I64d", &n, &m, &mod);

init();

printf("%I64d\n", Lucas(n+m, m));

}

return 0;

}

Lucas定理的更多相关文章

  1. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  2. CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)

    Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...

  3. 大组合数:Lucas定理

    最近碰到一题,问你求mod (p1*p2*p3*……*pl) ,其中n和m数据范围是1~1e18 , l ≤10 , pi ≤ 1e5为不同的质数,并保证M=p1*p2*p3*……*pl ≤ 1e18 ...

  4. 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 95  Solved: 33[Submit][Statu ...

  5. 组合数取模Lucas定理及快速幂取模

    组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1)  , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...

  6. hdu 3037 Saving Beans Lucas定理

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  7. 【BZOJ1951】【SDOI2010】古代猪文 Lucas定理、中国剩余定理、exgcd、费马小定理

    Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...

  8. 组合数(Lucas定理) + 快速幂 --- HDU 5226 Tom and matrix

    Tom and matrix Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=5226 Mean: 题意很简单,略. analy ...

  9. HDU 4349 Xiao Ming's Hope lucas定理

    Xiao Ming's Hope Time Limit:1000MS     Memory Limit:32768KB  Description Xiao Ming likes counting nu ...

  10. HDU3037 Saving Beans(Lucas定理+乘法逆元)

    题目大概问小于等于m个的物品放到n个地方有几种方法. 即解这个n元一次方程的非负整数解的个数$x_1+x_2+x_3+\dots+x_n=y$,其中0<=y<=m. 这个方程的非负整数解个 ...

随机推荐

  1. NEC学习 ---- 模块 - 上图下文图文列表

    上图下文图文列表的效果如下图: 可以看到三个红色框中的三中"上图下文的图文列表"; 这里的代码其实没什么问题, 对于这种布局, 其实可以参考我上一篇介绍: NEC学习 ---- 模 ...

  2. NULL-safe equal

    http://dev.mysql.com/doc/refman/5.7/en/comparison-operators.html#operator_equal-to ,=NULL,NULL=NULL; ...

  3. TestNG的一个不足之处

    PS:本博客selenium分类不会记载selenium打开浏览器,定位元素,操作页面元素,切换到iframe,处理alter.confirm和prompt对话框这些在网上随处可见的信息:本博客此分类 ...

  4. websocket和swoole

    <head></head><body><script type="text/javascript">var sock = null; ...

  5. js获取元素的innerText属性为什么为空

    看这样一段内容: <div id="ii" style="visibility:hidden"> <a style="cursor: ...

  6. linux之php

    /usr/local/php/sbin/php-fpm 却无法启动,提示错误: ERROR: failed to load configuration file '/usr/local/php/etc ...

  7. iOS:搭建本地的服务器

    一.介绍 作为一个专业的程序员,不管你是前端还是移动端或者是后台,能够自己试着搭建一个本地的服务器还是很有必要的,有的时候,我们可以自己测试一些数据,很方便开发.其实,mac是自带有本地的服务器的,用 ...

  8. JS对象之间的关系

    JS对象类型 JS中,可以将对象分为"内部对象"."宿主对象"和"自定义对象"三种. 1.本地对象 ECMA-262定义为"独立于 ...

  9. 关于缓存中Cookie,Session,Cache的使用

    文章来源:http://canann.iteye.com/blog/1941173 以前实现数据的缓存有很多种方法,有客户端的Cookie,有服务器端的Session和Application. 其中C ...

  10. 欧几里得算法:从证明等式gcd(m, n) = gcd(n, m mod n)对每一对正整数m, n都成立说开去

    写诗或者写程序的时候,我们经常要跟欧几里得算法打交道.然而有没要考虑到为什么欧几里得算法是有效且高效的,一些偏激(好吧,请允许我用这个带有浓重个人情感色彩的词汇)的计算机科学家认为,除非程序的正确性在 ...