E(X+Y), E(XY), D(X + Y)
\(X, Y\)为两个随机变量, \(p_X(x), p_Y(y)\)分别为\(X, Y\)的概率密度/质量函数, \(p(x, y)\)为它们的联合概率密度.
\(E(X + Y) = E(X) + E(Y)\)在任何条件下成立
\[
E(X + Y) = \int_{-\infty}^{{+\infty}} \int_{-\infty}^{{+\infty}} (x + y) p(x, y) dx dy
\\ = \int_{-\infty}^{{+\infty}} \int_{-\infty}^{{+\infty}} x p(x, y) dx dy + \int_{-\infty}^{{+\infty}} \int_{-\infty}^{{+\infty}} y p(x, y) dx dy
\\ = E(X) + E(Y)
\]
不需要\(X, Y\)相互独立
\(E(XY) = E(X)E(Y)\)在\(X, Y\)相互独立时成立
\[
E(XY) = \int_{-\infty}^{{+\infty}} \int_{-\infty}^{{+\infty}} xy p(x, y) dx dy
\]
当\(X, Y\)相互独立时, \(p(x, y) = p_X(x)p_Y(y)\):
\[
E(XY) = \int_{-\infty}^{{+\infty}} \int_{-\infty}^{{+\infty}} xy p_X(x)p_Y(y) dx dy = E(X)E(Y)
\]
\(D(X + Y) = D(X) + D(Y)\)在\(X, Y\)相互独立时成立
\[
D(X + Y) = E([X + Y]^2) - E^2(X + Y) = E(X^2) + E(Y^2) + 2E(XY) - E^2(X) - E^2(Y) - 2E(X)E(Y)
\]
当\(X, Y\)相互独立时, \(2E(XY) = 2E(X)E(Y)\):
\[
D(X + Y) = E([X + Y]^2) - E^2(X + Y) = E(X^2)- E^2(X) + E(Y^2) - E^2(Y) = D(X) + D(Y)
\]
E(X+Y), E(XY), D(X + Y)的更多相关文章
- pojg2744找一个最长的字符串x,使得对于已经给出的字符串中的任意一个y,x或者是y的子串,或者x中的字符反序之后得到的新字符串是y的子串。
http://poj.grids.cn/practice/2744 描述现在有一些由英文字符组成的大小写敏感的字符串,你的任务是找到一个最长的字符串x,使得对于已经给出的字符串中的任意一个y,x或者是 ...
- 实现pow(int x, int y),即x的y次方 ; 异或交换两个数;
问题1:实现pow(int x, int y) ,即x的y次方 x的y次方就是有y个x连续乘机,代码如下: #include <stdio.h> #include <stdlib.h ...
- 给定n,求1/x + 1/y = 1/n (x<=y)的解数~hdu-1299~(分解素因子详解)
链接:https://www.nowcoder.com/acm/contest/90/F来源:牛客网 题目描述 给定n,求1/x + 1/y = 1/n (x<=y)的解数.(x.y.n均为正整 ...
- P(Y|X) 和 P(X,Y)
P ( x | y ):在Y发生的条件下,X发生的概率.P ( x , y )P(x,y)说明该事件与两个因素有关,比如设是因素A,B.P(x,y)=P{因素A处于x状态,因素B处于y状态}确切地说P ...
- GCD 莫比乌斯反演 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对(x,y)有多少对.
/** 题目:GCD 链接:https://vjudge.net/contest/178455#problem/E 题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对( ...
- 均值为1的独立指数随机Y1,Y2,组合成的Y=Y1-(Y2-1)^2/2 在Y>0的条件下也是指数随机变量
均值为1的独立指数随机Y1,Y2,组合成的Y=Y1-(Y2-1)^2/2 在Y>0的条件下也是指数随机变量 另一个条件分布 13题有错误,应该是P{x<X<x+dx,y<Y& ...
- history of program atan2(y,x)和pow(x,y)
编年史 1951 – Regional Assembly Language 1952 – Autocode 1954 – IPL (LISP语言的祖先) 1955 – FLOW-MATIC (COBO ...
- atan2(y,x)和pow(x,y)
atan2(y,x): 函数atan2(y, x)是4象限反正切,求的是y/x的反正切,其返回值为[-π,+π]之间的一个数.它的取值不仅取决于正切值y/x,还取决于点 (x, y) 落入哪个象限: ...
- 2016/3/27 分页 共X条数据 本页x条 本页从x-y条 x/y页 首页 上一页 123456 下一页 末页 pagego echo $page->fpage(7,6,5,4,3,2,1,0);
显示效果: fpage.class.php <?php /** file: page.class.php 完美分页类 Page */ class Page { private $total; / ...
随机推荐
- NOIP2014pj子矩阵[搜索|DP]
题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4.5列交叉位置的元素 ...
- Red5 第一个例子之HelloWorld
http://yerik.blog.51cto.com/1662422/1343993
- maven总结5
上篇文章中项目最终发布的release仓库和快照仓库都是nexus的默认仓库,若所有的本地开发项目版本都发布到同一个仓库,可能会造成冲突.因此,我们可以为每一个项目创建一组仓库(快照版本和releas ...
- jsp前三章测试改错题
(选择一项) A: B: C: D: 正确答案是 B ,B/S架构并不是C/S架构的替代品,有些程序例如大型的网络游戏一般使用的是C/S架构. (选择多项) A: B: C: D: 正确答案是 A ...
- Java命令行的执行参数
Java 程序命令行参数说明 启动Java程序的方式有两种: # starts a Java virtual machine, loads the specified class, and invok ...
- Centos下Tomcat 安装Apache Portable Runtime
APR(Apache Portable Runtime)是一个高可移植库,它是Apache HTTP Server 2.x的核心. APR有很多用途,包括访问高级IO功能(例如sendfile,epo ...
- Entity Framework 迁移命令 详解
一.Entity Framework 迁移命令(get-help EntityFramework) Enable-Migrations 启用迁移 Add-Migration 为挂起的Model变化添加 ...
- bootstrap div 弹出与关闭
html <div id="myModal" class="modal" tabindex="-1" role="dialo ...
- DEDECMS之三 首页、列表页怎么调用文章内容
一.首页调用 百度了很多,没有找到实际的解决方法,对于直接读取数据库,这种写法不会采取. 后来,仔细考虑,这部分解决的内容不会很多,所以直接使用了简介的内容 方法一(默认长度55) [field:in ...
- HTML5商城开发三 jquery 星星评分插件
展示: