Image Watch是在VS2012上使用的一款OpenCV工具,能够实时显示图像和矩阵Mat的内容,跟Matlab很像,方便程序调试,相当好用。跟VS2012配合使用,简直就是一款神器!让我一下就爱上它了!

第一次看到Image Watch是今年3、4月份的时候,当时是在微博上看到新闻,点击链接的下载页面一直出问题,后面就忘了这事,昨天碰巧在OpenCV主页看到OpenCV2.4.5的Change Logs里面有链接,点进能下载果断试用下啊!

闲话少说,先看看部分相关链接。

1、Image Watch 的下载链接

2、OpenCV关于Image Watch的介绍页面链接

3、OpenCV2.4.5在线文档关于Image Watch的介绍文档

4、更详细的信息参见Image Watch的官方网站

直接上图,有个直观印象。

下面利用一个实际的例子,来说明下Image Watch。

利用二维SURF特征和单映射寻找已知物体。输入两幅图像,一幅是需要寻找的物体图像,另一幅是场景中包含此物体的图像。

SURF特征的特征描述方法封装在SurfFeatureDetector类中,利用成员函数detect函数检测出SURF特征的关键点,保存在vector容器中,再利用SurfDesciptorExtractor类进行特征向量的计算,将之前的vector变量变成矩阵形式保存在Mat中。

利用FLANN特征匹配算法进行匹配,此算法封装在FlannBaseMatcher类中,匹配后保留好的特征匹配点。利用findHomography获取匹配特征点之间的变换,最后利用perspectiveTransform定位到场景图中物体的4个点。

代码如下:

#include <stdio.h>
#include <iostream>
#include <opencv2\core\core.hpp>
#include <opencv2\imgproc\imgproc.hpp>
#include <opencv2\nonfree\features2d.hpp>
#include <opencv2\highgui\highgui.hpp>
#include <opencv2\calib3d\calib3d.hpp> using namespace cv; void usage()
{
std::cout << "Usage: ./FindObjectByFeature <img1> <img2> " << std::endl;
} int main(int argc, char *argv[])
{
if(argc != )
{
usage();
return -;
} Mat img_object = imread(argv[], CV_LOAD_IMAGE_COLOR);
Mat img_scene = imread(argv[], CV_LOAD_IMAGE_COLOR); if(!img_object.data || !img_scene.data)
{
std::cout << "Error reading images!" << std::endl;
return -;
} //step1:检测SURF特征点/////////////////////////////////////////////////////////////////
int minHeassian = ;
SurfFeatureDetector detector(minHeassian); std::vector<KeyPoint> keypoints_object, keypoints_scene; detector.detect(img_object, keypoints_object);
detector.detect(img_scene, keypoints_scene); //step2:计算特征向量///////////////////////////////////////////////////////////////////
SurfDescriptorExtractor extractor; Mat descriptors_object, descriptors_scene; extractor.compute(img_object, keypoints_object, descriptors_object);
extractor.compute(img_scene, keypoints_scene, descriptors_scene); //step3:利用FLANN匹配算法匹配特征描述向量//////////////////////////////////////////////
FlannBasedMatcher matcher;
std::vector<DMatch> matches;
matcher.match( descriptors_object, descriptors_scene, matches); double max_dist = ; double min_dist = ; //快速计算特征点之间的最大和最小距离///////////////////////////////////////////////////
for(int i = ; i < descriptors_object.rows; i++)
{
double dist = matches[i].distance;
if(dist < min_dist) min_dist = dist;
if(dist > max_dist) max_dist = dist;
} printf("---Max dist: %f \n", max_dist);
printf("---Min dist: %f \n", min_dist); //只画出好的匹配点(匹配特征点之间距离小于3*min_dist)//////////////////////////////////
std::vector<DMatch> good_matches; for(int i = ; i < descriptors_object.rows; i++)
{
if(matches[i].distance < *min_dist)
good_matches.push_back(matches[i]);
} Mat img_matches;
drawMatches(img_object, keypoints_object, img_scene, keypoints_scene,
good_matches, img_matches, Scalar::all(-), Scalar::all(-),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS); //定位物体////////////////////////////////////////////////////////////////////////////
std::vector<Point2f> obj;
std::vector<Point2f> scene; for(int i = ; i < good_matches.size(); i++)
{
//从好的匹配中获取特征点/////////////////////////////////////
obj.push_back(keypoints_object[good_matches[i].queryIdx].pt);
scene.push_back(keypoints_scene[good_matches[i].trainIdx].pt);
} //找出匹配特征点之间的变换///////////////////
Mat H = findHomography(obj, scene, CV_RANSAC); //得到image_1的角点(需要寻找的物体)//////////
std::vector<Point2f> obj_corners();
obj_corners[] = cvPoint(,);
obj_corners[] = cvPoint(img_object.cols, );
obj_corners[] = cvPoint(img_object.cols, img_object.rows);
obj_corners[] = cvPoint(, img_object.rows);
std::vector<Point2f> scene_corners(); //匹配四个角点/////////////////////////////////////
perspectiveTransform(obj_corners, scene_corners, H); //画出匹配的物体///////////////////////////////////////////////////////////////////////
line(img_matches, scene_corners[] + Point2f(img_object.cols, ), scene_corners[] + Point2f(img_object.cols, ), Scalar(,,), );
line(img_matches, scene_corners[] + Point2f(img_object.cols, ), scene_corners[] + Point2f(img_object.cols, ), Scalar(,,), );
line(img_matches, scene_corners[] + Point2f(img_object.cols, ), scene_corners[] + Point2f(img_object.cols, ), Scalar(,,), );
line(img_matches, scene_corners[] + Point2f(img_object.cols, ), scene_corners[] + Point2f(img_object.cols, ), Scalar(,,), ); imshow("Good Matches & Object detection", img_matches); waitKey();
return ;
}

匹配结果图如下(下图中左边子图为待寻找的物体图像,右边子图场景中寻找到的物体图像):

在Debug模式下,如果我们在程序某处设置调试断点,当程序运行到断点处时,可以在Image Watch窗口(View->Other Windows->Image Watch)查看已经分配内存的Mat图像。

还在将鼠标放置在所选图像上进行放大,最大能放大到像素级别。如下图所示:

在这个例子中,再稍微多说一点编译工程时我遇到的问题。

1、如果用的是OpenCV2.4以后版本,在程序include中包含:#include <opencv2/features2d/features2d.hpp>,可能会出现SurfFeatureDetector无法解析的情况。

这是因为OpenCV2.4后,SurfFeatureDetector类移到了opencv2/nonfree/features2d.hpp,而不是opencv2/features2d/features2d.hpp。因此需要把#include<opencv2/features2d/features2d.hpp>改为

#include <opencv2/nonfree/features2d.hpp>,另外还需要把opencv_nonfree245d.lib库文件链接进去。

2、另外,对于工程中有两个以上OpenCV版本的情况,加入#include <opencv2/nonfree/features2d.hpp>后编译又可能出现重定义的情况。开始我一直没搞清楚原因,后来在stackoverflow查了下。原因如下

Your compiler and editor are confused by the two OpenCV versions installed on your system.

First, make sure that all the settings ( include paths in Visual Studio, lib path in Visual studio linker settings and bin path -probably an environment variable) point to the same version.

Next, make sure to include all the needed headers. In OpenCV 2.4 and above, SURF and SIFT have been moved to nonfree module, so you also have to install it. Do not forget that some functions may be moved to legacy.

And if you uninstall one version of OpenCV, the editor (which doesn't have all the parsing capabilities of the compiler) will not be confused anymore.

也就是说如果VS中安装了两个以上的OpenCV版本,VS可能会搞混,把include的地址解析到了两个不同OpenCV目录下的头文件,因此引起重定义。

于是在VS中把include目录下的OpenCV2.3.1的头文件地址删除,问题解决。

看来程序员真的应该多上下stackoverflow,能学到很多知识。

OpenCV中的神器Image Watch的更多相关文章

  1. opencv中Mat与IplImage,CVMat类型之间转换

    opencv中对图像的处理是最基本的操作,一般的图像类型为IplImage类型,但是当我们对图像进行处理的时候,多数都是对像素矩阵进行处理,所以这三个类型之间的转换会对我们的工作带来便利. Mat类型 ...

  2. 解析opencv中Box Filter的实现并提出进一步加速的方案(源码共享)。

    说明:本文所有算法的涉及到的优化均指在PC上进行的,对于其他构架是否合适未知,请自行试验. Box Filter,最经典的一种领域操作,在无数的场合中都有着广泛的应用,作为一个很基础的函数,其性能的好 ...

  3. OpenCV中IplImage图像格式与BYTE图像数据的转换

    最近在将Karlsruhe Institute of Technology的Andreas Geiger发表在ACCV2010上的Efficent Large-Scale Stereo Matchin ...

  4. opencv中的SIFT,SURF,ORB,FAST 特征描叙算子比较

    opencv中的SIFT,SURF,ORB,FAST 特征描叙算子比较 参考: http://wenku.baidu.com/link?url=1aDYAJBCrrK-uk2w3sSNai7h52x_ ...

  5. 混合高斯模型:opencv中MOG2的代码结构梳理

    /* 头文件:OurGaussmix2.h */ #include "opencv2/core/core.hpp" #include <list> #include&q ...

  6. opencv中的.at方法

    opencv中的.at方法是用来获取图像像素值得函数: interpolation:差值 histogram:直方图

  7. 【OpenCV】OpenCV中GPU模块使用

    CUDA基本使用方法 在介绍OpenCV中GPU模块使用之前,先回顾下CUDA的一般使用方法,其基本步骤如下: 1.主机代码执行:2.传输数据到GPU:3.确定grid,block大小: 4.调用内核 ...

  8. openCV中IplImage的使用

    http://blog.csdn.net/welcome_xu/article/details/7650680 IplImage结构详细分析   IplImage 结构解读: typedef stru ...

  9. Opencv中直线的表示方法

                               [blog算法原理]Opencv中直线的表示方法  一.问题的提出:​          在实际项目编写过程中,需要对直线(Line)进行特定的处 ...

随机推荐

  1. 记录一些在用wcf的过程中走过的泥巴路 【第一篇】

    自从转移战场之后,比以前忙多了,博客也没能及时跟上,原本准备继续mvc系列,但是在那边技术比较陈旧还没能用得上,话说有3年没接触这玩意了,东西也 都忘了差不多了,既然再次接触,我也就继续温习温习,记录 ...

  2. 朝花夕拾之--大数据平台CDH集群离线搭建

    body { border: 1px solid #ddd; outline: 1300px solid #fff; margin: 16px auto; } body .markdown-body ...

  3. ipcs, ipcrm

    ipcs ipcs -m #查看系统中已经存在的共享内存 ------ Shared Memory Segments -------- key shmid owner perms bytes natt ...

  4. android 读取根目录下的文件或文件夹

    @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setC ...

  5. GNU C 内联汇编介绍

    GNU C 内联汇编介绍 简介 1.很早之前就听说 C 语言能够直接内嵌汇编指令.但是之前始终没有去详细了解过.最近由于某种需求,看到了相关的 C 语言代码.也就自然去简单的学习了一下如何在 C 代码 ...

  6. Superpixel Based RGB-D Image Segmentation Using Markov Random Field——阅读笔记

    1.基本信息 题目:使用马尔科夫场实现基于超像素的RGB-D图像分割: 作者所属:Ferdowsi University of Mashhad(Iron) 发表:2015 International ...

  7. MMORPG大型游戏设计与开发(客户端架构 part2 of vegine)

    一个好的接口是尽可能让更多实用的方法进行整理封装,要记住的是不常用的方法和类最好不好封装到接口中,因为那样会造成本身的困惑.基础模块中并没有太多封装,甚至连一个类的封装也没有,而是一些很常用的工具方法 ...

  8. 怎么解决ZBrush保存历史记录太多问题

    经常有用户反映说ZBrush ®保存历史记录太多了,导致文件太大了!模型已经是降低级别保存了,在保存历史记录的时候还是很慢很慢,不知道怎么才能减少ZBrush保存的历史步骤的多少.针对这一问题,小编统 ...

  9. POJ3260The Fewest Coins[背包]

    The Fewest Coins Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6299   Accepted: 1922 ...

  10. MIT License

    早上看到微软的UWP例子,在代码里看到 Copyright (c) Microsoft. All rights reserved.// This code is licensed under the ...