【vijos1243】 生产产品
https://vijos.org/p/1243 (题目链接)
题意
一个产品的生产有m个步骤,一共n个机器人。机器人i完成步骤j的时间为T[i][j],每次当产品从一个机器人那里移动到另一个机器人那里需要时间K,每个机器人不能持续工作L个步骤。问最少能在多少时间内完成。
Solution
看起来题目变量非常多,其实想一想就能列出dp方程:${f[i][j]}$表示第${i}$个机器人完成第${j}$个步骤,一共完成前${j}$个步骤所需要的最短时间;${s[i][j]}$表示第${i}$个机器人做完前${j}$个步骤所需要的时间,那么:$${f[i][j]=min(f[k][l]+s[i][j]-s[i][l]+K)}$$
其中${k∈[1,n]}$且${k≠j}$,${l∈[j-L,j-1]}$。
但是这样的话复杂度有点高。。我们发现${n}$的范围只有5,我们可以从这里下手解决问题。如果对单独的一个机器人1号考虑,将dp方程转换一下:$${f[i][j]=min((f[1][l]-s[i][l])+s[i][j]+K)}$$
我们发现括号里的东西与j无关,可以用单调队列维护,所以我们开n个单调队列进行维护,问题就解决了。
代码
// vijos1243
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=100010;
int s[10][maxn],l[10],r[10],q[10][maxn],p[10][maxn],f[10][maxn];
int n,m,K,L; int main() {
scanf("%d%d%d%d",&m,&n,&K,&L);
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++) scanf("%d",&s[i][j]),s[i][j]+=s[i][j-1];
for (int i=1;i<=n;i++) l[i]=r[i]=1,q[i][1]=0,p[i][1]=0;
for (int j=1;j<=m;j++) {
for (int i=1;i<=n;i++) {
while (l[i]<=r[i] && p[i][l[i]]<j-L) l[i]++;
f[i][j]=q[i][l[i]]+s[i][j]+K;
}
for (int i=1;i<=n;i++)
for (int k=1;k<=n;k++) if (k!=i) {
while (l[k]<=r[k] && q[k][r[k]]>=f[i][j]-s[k][j]) r[k]--;
q[k][++r[k]]=f[i][j]-s[k][j];
p[k][r[k]]=j;
}
}
int ans=inf;
for (int i=1;i<=n;i++) ans=min(ans,f[i][m]);
printf("%d",ans-K);
return 0;
}
【vijos1243】 生产产品的更多相关文章
- vijos P1243 生产产品(单调队列+DP)
P1243生产产品 描述 在经过一段时间的经营后,dd_engi的OI商店不满足于从别的供货商那里购买产 品放上货架,而要开始自己生产产品了!产品的生产需要M个步骤,每一个步骤都可以在N台机器 ...
- 刷题总结——生产产品(vijo1243)
题目: 描述 在经过一段时间的经营后,dd_engi的OI商店不满足于从别的供货商那里购买产品放上货架,而要开始自己生产产品了!产品的生产需要M个步骤,每一个步骤都可以在N台机器中的任何一台完成,但生 ...
- vijos 1243 生产产品 DP + 单调队列优化
LINK 题意:有1个产品,m个步骤编号为1~m.步骤要在n个机器人的手中生产完成.其中,第i个步骤在第j个机器人手中的生产时间给定为$T[i][j]$,切换机器人消耗cost.步骤必须按顺序,同一个 ...
- Vijos P1243 生产产品 (单调队列优化DP)
题意: 必须严格按顺序执行M个步骤来生产一个产品,每一个步骤都可以在N台机器中的任何一台完成.机器i完成第j个步骤的时间为T[i][j].把半成品从一台机器上搬到另一台机器上也需要一定的时间K.每台机 ...
- Vijos 1243 生产产品 (单调队列优化的动态规划)
题意:中文题.不说了. 注意一些地方,机器的执行过程是没有顺序的,而且每个机器可以用多次.第一次执行的机器不消耗转移时间K. 用dp[i][j]表示第i个机器完成第j个步骤的最短时间,sum[j][i ...
- 2018.10.23 vijo1243生产产品(单调队列优化dp)
传送门 这道单调队列真的有点难写啊. 方程感觉挺简单的. f[i][j]f[i][j]f[i][j]表示在第iii个车间结束前jjj次步骤的最小代价. 然后用单调队列毒瘤优化一下就行了. 代码: #i ...
- vijos 1243 生产产品
貌似两年前联赛复习的时候就看过这题 然而当时大概看看了 感觉太难 便没有去做 如今再去做的时候 发现其实也并不容易 ------------------------------------------ ...
- Java多线程系列--“基础篇”11之 生产消费者问题
概要 本章,会对“生产/消费者问题”进行讨论.涉及到的内容包括:1. 生产/消费者模型2. 生产/消费者实现 转载请注明出处:http://www.cnblogs.com/skywang12345/p ...
- Lingo求解线性规划案例1——生产计划问题
凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 说明: Lingo版本: 某工厂明年根据合同,每个季度末 ...
随机推荐
- Java 集合系列11之 Hashtable详细介绍(源码解析)和使用示例
概要 前一章,我们学习了HashMap.这一章,我们对Hashtable进行学习.我们先对Hashtable有个整体认识,然后再学习它的源码,最后再通过实例来学会使用Hashtable.第1部分 Ha ...
- docker 镜像导入导出
导出(Export) Export命令用于持久化容器(不是镜像).所以,我们就需要通过以下方法得到容器ID: sudo docker ps -a 接着执行导出: sudo docker export ...
- WPF 绑定枚举值
前台Xaml <ComboBox x:Name=" HorizontalAlignment="Left" Margin="5 0 0 0" Se ...
- IDEA 13 无法进入debug 模式解决方案
1.最近在idea中使用tomcat开发项目,像往常一样打开tomcat进行debug,但奇怪的事情出现了,项目根本不进断点.后查找原因,估计idea的加载参数方式是:先加载tomcat中设置的参数, ...
- 关于.Net的面试遐想
概述 这几天更新相关的面试题目,主是要针对有4年或以上经验的面试者,总体来说,发现面试人员的答题效果和预期相差比较大,我也在想是不是我出的题目偏离现实,但我更愿意相信,是我们一些.Net开发者在工作中 ...
- 再记一次w3wp占用CPU过高的解决过程(Dictionary和线程安全)
在此之前项目有发生过两次类似的状况,都得以解决,但最近又会发现偶尔CPU会跑满,虽然之前使用过WinDbg解决过两次问题但人的记忆是不可靠的,今天处理同样问题的时候还是遇到了一些障碍,这一次希望可以记 ...
- swfupload提示“错误302”的解决方法
1.关于图片上传控件,flash控件的显示效果要好一些,本人使用swfupload 2.swfupload上传控件使用方式详见文档 http://www.leeon.me/upload/other/s ...
- Android开发之AutoCompleteTextView的简单使用
这里只谈简单的使用: 代码xml: <AutoCompleteTextView android:id="@+id/actv" android:layout_width=&qu ...
- 东大OJ-最大子序列问题的变形
1302: 最大子序列 时间限制: 1 Sec 内存限制: 128 MB 提交: 224 解决: 54 [提交][状态][讨论版] 题目描述 给定一个N个整数组成的序列,整数有正有负,找出两段不重 ...
- 第一章:java语言概述与开发环境
前言: 1.程序是什么? 程序是对现实世界的数字化模拟! 2.编程语言是工具,程序的作用就是解决问题! 重要的思路! 该知识点能解决什么问题? 1.语言特性:单继承.多接口! 纯面向 ...