在最新的master分支上官方提供了Spark JDBC外部数据源的实现,先尝为快。

通过spark-shell测试

import org.apache.spark.sql.SQLContext
val sqlContext = new SQLContext(sc)
import sqlContext._ val TBLS_JDBC_DDL = s"""
|CREATE TEMPORARY TABLE spark_tbls
|USING org.apache.spark.sql.jdbc
|OPTIONS (
| url 'jdbc:mysql://hadoop000:3306/hive?user=root&password=root',
| dbtable 'TBLS'
|)""".stripMargin sqlContext.sql(TBLS_JDBC_DDL)

指定列查询:

sql("SELECT * FROM spark_tbls").collect.foreach(println)
[1,1423100397,1,0,spark,0,1,page_views,MANAGED_TABLE,A,D]
[6,1423116106,1,0,spark,0,6,order_created,MANAGED_TABLE,B,E]
[7,1423116131,1,0,spark,0,7,test_load1,MANAGED_TABLE,C,F]
[8,1423116145,1,0,spark,0,8,order_picked,MANAGED_TABLE,null,null]
[9,1423116160,1,0,spark,0,9,order_shipped,MANAGED_TABLE,null,null]
[10,1423116168,1,0,spark,0,10,order_received,MANAGED_TABLE,null,null]
[11,1423116179,1,0,spark,0,11,order_cancelled,MANAGED_TABLE,null,null]
[12,1423116193,1,0,spark,0,12,order_tracking,MANAGED_TABLE,null,null]
[13,1423116248,1,0,spark,0,13,order_tracking_join,MANAGED_TABLE,null,null]
[14,1423116298,1,0,spark,0,14,click_log,MANAGED_TABLE,null,null]
[15,1423116316,1,0,spark,0,15,ad_list,MANAGED_TABLE,null,null][16,1423116324,1,0,spark,0,16,ad_list_string,MANAGED_TABLE,null,null]
[17,1423116338,1,0,spark,0,17,cookie_cats,MANAGED_TABLE,null,null]

查询表中指定列:

sql("SELECT TBL_ID,TBL_NAME,TBL_TYPE FROM spark_tbls").collect.foreach(println)
[1,page_views,MANAGED_TABLE]
[6,order_created,MANAGED_TABLE]
[7,test_load1,MANAGED_TABLE]
[8,order_picked,MANAGED_TABLE]
[9,order_shipped,MANAGED_TABLE]
[10,order_received,MANAGED_TABLE]
[11,order_cancelled,MANAGED_TABLE]
[12,order_tracking,MANAGED_TABLE]
[13,order_tracking_join,MANAGED_TABLE]
[14,click_log,MANAGED_TABLE]
[15,ad_list,MANAGED_TABLE]
[16,ad_list_string,MANAGED_TABLE]
[17,cookie_cats,MANAGED_TABLE]

指定查询条件查询:

sql("SELECT TBL_ID,TBL_NAME,TBL_TYPE FROM spark_tbls WHERE TBL_ID = 1").collect.foreach(println)
[1,page_views,MANAGED_TABLE] sql("SELECT TBL_ID,TBL_NAME,TBL_TYPE FROM spark_tbls WHERE TBL_ID < 7").collect.foreach(println)
[1,page_views,MANAGED_TABLE]
[6,order_created,MANAGED_TABLE] sql("SELECT TBL_ID,TBL_NAME,TBL_TYPE FROM spark_tbls WHERE TBL_ID <= 7").collect.foreach(println)
[1,page_views,MANAGED_TABLE]
[6,order_created,MANAGED_TABLE]
[7,test_load1,MANAGED_TABLE] sql("SELECT TBL_ID,TBL_NAME,TBL_TYPE FROM spark_tbls WHERE TBL_ID > 7").collect.foreach(println)
[8,order_picked,MANAGED_TABLE]
[9,order_shipped,MANAGED_TABLE]
[10,order_received,MANAGED_TABLE]
[11,order_cancelled,MANAGED_TABLE]
[12,order_tracking,MANAGED_TABLE]
[13,order_tracking_join,MANAGED_TABLE]
[14,click_log,MANAGED_TABLE]
[15,ad_list,MANAGED_TABLE]
[16,ad_list_string,MANAGED_TABLE]
[17,cookie_cats,MANAGED_TABLE] sql("SELECT TBL_ID,TBL_NAME,TBL_TYPE FROM spark_tbls WHERE TBL_ID >= 7").collect.foreach(println)
[7,test_load1,MANAGED_TABLE]
[8,order_picked,MANAGED_TABLE]
[9,order_shipped,MANAGED_TABLE]
[10,order_received,MANAGED_TABLE]
[11,order_cancelled,MANAGED_TABLE]
[12,order_tracking,MANAGED_TABLE]
[13,order_tracking_join,MANAGED_TABLE]
[14,click_log,MANAGED_TABLE]
[15,ad_list,MANAGED_TABLE]
[16,ad_list_string,MANAGED_TABLE]
[17,cookie_cats,MANAGED_TABLE] sql("SELECT TBL_ID,TBL_NAME,TBL_TYPE,VIEW_EXPANDED_TEXT FROM spark_tbls WHERE VIEW_EXPANDED_TEXT IS NULL").collect.foreach(println)
[8,order_picked,MANAGED_TABLE,null]
[9,order_shipped,MANAGED_TABLE,null]
[10,order_received,MANAGED_TABLE,null]
[11,order_cancelled,MANAGED_TABLE,null]
[12,order_tracking,MANAGED_TABLE,null]
[13,order_tracking_join,MANAGED_TABLE,null]
[14,click_log,MANAGED_TABLE,null]
[15,ad_list,MANAGED_TABLE,null]
[16,ad_list_string,MANAGED_TABLE,null]
[17,cookie_cats,MANAGED_TABLE,null] sql("SELECT TBL_ID,TBL_NAME,TBL_TYPE,VIEW_EXPANDED_TEXT FROM spark_tbls WHERE VIEW_EXPANDED_TEXT IS NOT NULL").collect.foreach(println)
[1,page_views,MANAGED_TABLE,A]
[6,order_created,MANAGED_TABLE,B]
[7,test_load1,MANAGED_TABLE,C] sql("SELECT TBL_ID,TBL_NAME,TBL_TYPE,VIEW_EXPANDED_TEXT FROM spark_tbls WHERE TBL_ID>=7 AND TBL_ID <=10").collect.foreach(println)
[7,test_load1,MANAGED_TABLE,C]
[8,order_picked,MANAGED_TABLE,null]
[9,order_shipped,MANAGED_TABLE,null]
[10,order_received,MANAGED_TABLE,null]

多partition并行执行: 可以通过http://hadoop000:4040/jobs/的tasks数查看

val TBLS_PARTS_JDBC_DDL = s"""
|CREATE TEMPORARY TABLE spark_tbls_parts
|USING org.apache.spark.sql.jdbc
|OPTIONS (
| url 'jdbc:mysql://hadoop000:3306/hive?user=root&password=root',
| dbtable 'TBLS',
| partitionColumn 'TBL_ID',
| lowerBound '',
| upperBound '',
| numPartitions ''
|)""".stripMargin sqlContext.sql(TBLS_PARTS_JDBC_DDL)
sql("SELECT TBL_ID,TBL_NAME,TBL_TYPE,VIEW_EXPANDED_TEXT FROM spark_tbls_parts WHERE VIEW_EXPANDED_TEXT IS NULL").collect.foreach(println)
[8,order_picked,MANAGED_TABLE,null]
[9,order_shipped,MANAGED_TABLE,null]
[10,order_received,MANAGED_TABLE,null]
[11,order_cancelled,MANAGED_TABLE,null]
[12,order_tracking,MANAGED_TABLE,null]
[13,order_tracking_join,MANAGED_TABLE,null]
[14,click_log,MANAGED_TABLE,null]
[15,ad_list,MANAGED_TABLE,null]
[16,ad_list_string,MANAGED_TABLE,null]
[17,cookie_cats,MANAGED_TABLE,null]
[21,emp,MANAGED_TABLE,null]
[22,dept,MANAGED_TABLE,null]

多表关联查询:

val COLUMNS_V2_JDBC_DDL = s"""
|CREATE TEMPORARY TABLE spark_column_v2
|USING org.apache.spark.sql.jdbc
|OPTIONS (
| url 'jdbc:mysql://hadoop000:3306/hive?user=root&password=root',
| dbtable 'COLUMNS_V2'
|)""".stripMargin sqlContext.sql(COLUMNS_V2_JDBC_DDL)
sql("SELECT CD_ID, COLUMN_NAME FROM spark_column_v2").collect.foreach(println)
[1,city_id]
[1,end_user_id]
[1,ip]
[1,referer]
[1,session_id]
[1,track_time]
[1,url]
[6,event_time]
[6,ordernumber]
[7,id]
[7,name]
[8,event_time]
[8,ordernumber]
[9,event_time]
[9,ordernumber]
[10,event_time]
[10,ordernumber]
[11,event_time]
[11,ordernumber]
[12,order_cancelled_ts]
[12,order_created_ts]
[12,order_picked_ts]
[12,order_received_ts]
[12,order_shipped_ts]
[12,ordernumber]
[13,order_cancelled_ts]
[13,order_created_ts]
[13,order_picked_ts]
[13,order_received_ts]
[13,order_shipped_ts]
[13,ordernumber]
[14,ad_id]
[14,cookie_id]
[14,ts]
[15,ad_id]
[15,catalogs]
[15,url]
[16,ad_id]
[16,catalogs]
[16,url]
[17,catalog]
[17,cookie_id]
[17,weight]
[21,comm]
[21,deptno]
[21,empno]
[21,ename]
[21,hiredate]
[21,job]
[21,mgr]
[21,sal]
[22,deptno]
[22,dname]
[22,loc] sql("SELECT a.TBL_ID, a.TBL_NAME, a.TBL_TYPE, b.CD_ID, b.COLUMN_NAME FROM spark_tbls a join spark_column_v2 b on a.TBL_ID = b.CD_ID WHERE a.TBL_ID = 1").collect.foreach(println)
[1,page_views,MANAGED_TABLE,1,city_id]
[1,page_views,MANAGED_TABLE,1,end_user_id]
[1,page_views,MANAGED_TABLE,1,ip]
[1,page_views,MANAGED_TABLE,1,referer]
[1,page_views,MANAGED_TABLE,1,session_id]
[1,page_views,MANAGED_TABLE,1,track_time]
[1,page_views,MANAGED_TABLE,1,url] sql("SELECT a.TBL_ID, COUNT(b.CD_ID) FROM spark_tbls a join spark_column_v2 b on a.TBL_ID = b.CD_ID GROUP BY a.TBL_ID").collect.foreach(println)
[1,7]
[6,2]
[7,2]
[8,2]
[9,2]
[10,2]
[11,2]
[12,6]
[13,6]
[14,3]
[15,3]
[16,3]
[17,3]
[21,8]
[22,3]

通过spark-sql测试

CREATE TEMPORARY TABLE spark_tbls
USING org.apache.spark.sql.jdbc
OPTIONS (
url 'jdbc:mysql://hadoop000:3306/hive?user=root&password=root',
dbtable 'TBLS'
);
SELECT * FROM spark_tbls;

CREATE TEMPORARY TABLE spark_tbls_parts
USING org.apache.spark.sql.jdbc
OPTIONS (
url 'jdbc:mysql://hadoop000:3306/hive?user=root&password=root',
dbtable 'TBLS',
partitionColumn 'TBL_ID',
lowerBound '',
upperBound '',
numPartitions ''
);
SELECT * FROM spark_tbls_parts;

CREATE TEMPORARY TABLE spark_column_v2
USING org.apache.spark.sql.jdbc
OPTIONS (
url 'jdbc:mysql://hadoop000:3306/hive?user=root&password=root',
dbtable 'COLUMNS_V2'
);
select * from spark_column_v2;
SELECT a.TBL_ID, a.TBL_NAME, a.TBL_TYPE, b.CD_ID, b.COLUMN_NAME FROM spark_tbls a join spark_column_v2 b on a.TBL_ID = b.CD_ID WHERE a.TBL_ID = 1

Spark SQL External Data Sources JDBC官方实现读测试的更多相关文章

  1. Spark SQL External Data Sources JDBC官方实现写测试

    通过Spark SQL External Data Sources JDBC实现将RDD的数据写入到MySQL数据库中. jdbc.scala重要API介绍: /** * Save this RDD ...

  2. Spark SQL External Data Sources JDBC简易实现

    在spark1.2版本中最令我期待的功能是External Data Sources,通过该API可以直接将External Data Sources注册成一个临时表,该表可以和已经存在的表等通过sq ...

  3. Spark SQL 之 Data Sources

    #Spark SQL 之 Data Sources 转载请注明出处:http://www.cnblogs.com/BYRans/ 数据源(Data Source) Spark SQL的DataFram ...

  4. Spark(3) - External Data Source

    Introduction Spark provides a unified runtime for big data. HDFS, which is Hadoop's filesystem, is t ...

  5. Spark SQL External DataSource简介

    随着Spark1.2的发布,Spark SQL开始正式支持外部数据源.这使得Spark SQL支持了更多的类型数据源,如json, parquet, avro, csv格式.只要我们愿意,我们可以开发 ...

  6. How to: Provide Credentials for the Dashboards Module when Using External Data Sources

    XAF中使用dashboard模块时,如果使用了sql数据源,可以使用此方法提供连接信息 https://www.devexpress.com/Support/Center/Question/Deta ...

  7. 【转载】Spark SQL之External DataSource外部数据源

    http://blog.csdn.net/oopsoom/article/details/42061077 一.Spark SQL External DataSource简介 随着Spark1.2的发 ...

  8. Apache Spark 2.2.0 中文文档 - Spark SQL, DataFrames and Datasets Guide | ApacheCN

    Spark SQL, DataFrames and Datasets Guide Overview SQL Datasets and DataFrames 开始入门 起始点: SparkSession ...

  9. What’s new for Spark SQL in Apache Spark 1.3(中英双语)

    文章标题 What’s new for Spark SQL in Apache Spark 1.3 作者介绍 Michael Armbrust 文章正文 The Apache Spark 1.3 re ...

随机推荐

  1. SparkSQL之旅

    1.准备数据employee.txt ,Gong Shaocheng, ,Li Dachao, ,Qiu Xin, ,Cheng Jiangzhong, ,Wo Binggang, 将数据放入hdfs ...

  2. js禁用回退键backspace解决办法

    本文摘自http://q821424508.iteye.com/blog/1587025 以下为2.0版本,支持IE,firefox,chrome[这三款浏览器经过测试]等浏览器 window.onl ...

  3. Ubuntu下Apache的安装

    Ubuntu下可快速安装LAMP server(Apache+MySQL+PHP5),参见<Ubuntu下快速安装LAMP server>一文. 也可以手动安装Apache.本文介绍如何手 ...

  4. PHP的GD 支持和加载MySQL功能

    本机安装dedecms时发现, GD 支持 On [×]Off (不支持将导致与图片相关的大多数功能无法使用或引发警告) MySQL 支持 On [×]Off (不支持无法使用本系统) 错误,原来是环 ...

  5. 开发者如何利用工具快速开发出完美APP

    文|移动互联网李建华 微信:ydhlwdyq 传统的个人开发者,要想开发出一个完美的APP要 经过以下几个过程:搭建开发环境,写代码,写统计系统,开发即将完成后,要购买服务器,然后把程序布置到服务器上 ...

  6. 3、JS中的语句

    1.块语句 常用于组合0~多个语句:语法:{语句1;语句2……} *没有块级作用域:如:在for循环里面定义一个自增数 i,可以在for循环外取到它跳出循环时的值,而且for循环里面新定义的数据也能取 ...

  7. 处理oracle的死锁

    Oracle数据库操作中,我们有时会用到锁表查询以及解锁和kill进程等操作,那么这些操作是怎么实现的呢?本文我们主要就介绍一下这部分内容.(1)锁表查询的代码有以下的形式:select count( ...

  8. day14_API第四天

    1.正则(了解) 1.基本的正则表达式(看懂即可) 字符类[abc] a.b 或 c(简单类)[^abc] 任何字符,除了 a.b 或 c(否定)[a-zA-Z] a 到 z 或 A 到 Z,两头的字 ...

  9. 2015GitWebRTC编译实录14

    libvpx 尝试用脚本编译了下,发现有问题,就偃旗息鼓,改用他自己的configure了,在网上找了下,Git上有个现成的,直接用,更好些. https://github.com/brion/VPX ...

  10. iOS常用设计模式和机制之代理

    Delegate : 1 代理设计模式的使用我们首先需要明白三个要素 *委托方:委托别人去执行某些操作的人(对象) *代理方:被委托区执行某些操作的人(对象) *协议:(protocol)委托方需要代 ...