POJ 1436 Horizontally Visible Segments (线段树·区间染色)
题意 在坐标系中有n条平行于y轴的线段 当一条线段与还有一条线段之间能够连一条平行与x轴的线不与其他线段相交 就视为它们是可见的 问有多少组三条线段两两相互可见
先把全部线段存下来 并按x坐标排序 线段树记录相应区间从右往左当前可见的线段编号(1...n) 超过一条就为0 然后从左往右对每条线段 先查询左边哪些线段和它是可见的 把可见关系存到数组中 然后把这条线段相应区间的最右端可见编号更新为这条线段的编号 最后暴力统计有多少组即可了
#include <cstdio>
#include <algorithm>
#include <cstring>
#define lc p<<1, s, mid
#define rc p<<1|1, mid+1, e
#define mid ((s+e)>>1)
using namespace std;
const int N = 8005;
int top[N * 8];
bool g[N][N]; struct seg
{
int y1, y2, x;
} line[N]; bool cmp(seg a, seg b)
{
return a.x < b.x;
} void build()
{
memset(g, 0, sizeof(g));
memset(top, 0, sizeof(top));
} void pushup(int p)
{
top[p] = (top[p << 1] == top[p << 1 | 1]) ? top[p << 1] : 0;
} void pushdown(int p)
{
if(top[p])
{
top[p << 1] = top[p << 1 | 1] = top[p];
top[p] = 0;
}
} void update(int p, int s, int e, int l, int r, int v)
{
if(l <= s && e <= r)
{
top[p] = v;
return;
}
pushdown(p);
if(l <= mid) update(lc, l, r, v);
if(r > mid) update(rc, l, r, v);
pushup(p);
} void query(int p, int s, int e, int l, int r, int x)
{
if(top[p]) //p相应的区间已经仅仅可见一条线段
{
g[top[p]][x] = 1;
return;
}
if(s == e) return;
if(l <= mid) query(lc, l, r, x);
if(r > mid) query(rc, l, r, x);
} int main()
{
int T, n, l, r;
scanf("%d", &T);
while(T--)
{
scanf("%d", &n);
for(int i = 1; i <= n; ++i)
scanf("%d%d%d", &line[i].y1, &line[i].y2, &line[i].x);
sort(line + 1, line + n + 1, cmp); build();
for(int i = 1; i <= n; ++i)
{
//点化为区间会丢失间隔为1的区间 所以要乘以2
l = (line[i].y1) * 2;
r = (line[i].y2) * 2;
query(1, 0, N * 2, l, r, i);
update(1, 0, N * 2, l, r, i);
} int ans = 0;
for(int i = 1; i <= n; ++i)
{
for(int j = i + 1; j <= n; ++j)
{
if(g[i][j])
for(int k = j + 1; k <= n; ++k)
if(g[j][k] && g[i][k]) ++ans;
}
} printf("%d\n", ans);
}
return 0;
}
//Last modified : 2015-07-15 15:33
Description
segments are said to form a triangle of segments if each two of them are horizontally visible. How many triangles can be found in a given set of vertical segments?
Task
Write a program which for each data set:
reads the description of a set of vertical segments,
computes the number of triangles in this set,
writes the result.
Input
The first line of each data set contains exactly one integer n, 1 <= n <= 8 000, equal to the number of vertical line segments.
Each of the following n lines consists of exactly 3 nonnegative integers separated by single spaces:
yi', yi'', xi - y-coordinate of the beginning of a segment, y-coordinate of its end and its x-coordinate, respectively. The coordinates satisfy 0 <= yi' < yi'' <= 8 000, 0 <= xi <= 8 000. The segments are disjoint.
Output
Sample Input
1
5
0 4 4
0 3 1
3 4 2
0 2 2
0 2 3
Sample Output
1
Source
POJ 1436 Horizontally Visible Segments (线段树·区间染色)的更多相关文章
- (中等) POJ 1436 Horizontally Visible Segments , 线段树+区间更新。
Description There is a number of disjoint vertical line segments in the plane. We say that two segme ...
- POJ 1436 Horizontally Visible Segments(线段树)
POJ 1436 Horizontally Visible Segments 题目链接 线段树处理染色问题,把线段排序.从左往右扫描处理出每一个线段能看到的右边的线段,然后利用bitset维护枚举两个 ...
- POJ 1436.Horizontally Visible Segments-线段树(区间更新、端点放大2倍)
水博客,水一水. Horizontally Visible Segments Time Limit: 5000MS Memory Limit: 65536K Total Submissions: ...
- POJ 1436 Horizontally Visible Segments
题意: 有一些平行于y轴的线段 ,两条线段称为互相可见当且仅当存在一条水平线段连接这两条 与其他线段没交点. 最后问有多少组 3条线段,他们两两是可见的. 思路: 线段树,找出两两可见的那些组合, ...
- poj 3225 Help with Intervals(线段树,区间更新)
Help with Intervals Time Limit: 6000MS Memory Limit: 131072K Total Submissions: 12474 Accepted: ...
- POJ 2750 Potted Flower(线段树的区间合并)
点我看题目链接 题意 : 很多花盆组成的圆圈,每个花盆都有一个值,给你两个数a,b代表a位置原来的数换成b,然后让你从圈里找出连续的各花盆之和,要求最大的. 思路 :这个题比较那啥,差不多可以用DP的 ...
- POJ-2777 Count Color(线段树,区间染色问题)
Count Color Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 40510 Accepted: 12215 Descrip ...
- [ZOJ1610]Count the Colors(线段树,区间染色,单点查询)
题目链接:http://www.icpc.moe/onlinejudge/showProblem.do?problemCode=1610 题意:给一个长8000的绳子,向上染色.一共有n段被染色,问染 ...
- URAL-1987 Nested Segments 线段树简单区间覆盖
题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1987 题意:给定n条线段,每两条线段要么满足没有公共部分,要么包含.给出m个询问,求当前 ...
随机推荐
- 说说最小生成树(Minimum Spanning Tree)
minimum spanning tree(MST) 最小生成树是连通无向带权图的一个子图,要求 能够连接图中的所有顶点.无环.路径的权重和为所有路径中最小的. graph-cut 对图的一个切割或者 ...
- 开发npm模块经验总结
1.在windows下开发的package.json的bin链接的全局命令可能会在linux下报错:“没有那个文件或目录”之类的错误...此时可以在linux下用vim打开bin链接的js文件,设置s ...
- Windbg 基础命令 《第一篇》
Windbg.exe是Windows的一个调试工具,它支持两种调试模式,即“实时调试模式(Living)”和“事后调试模式(Postmortem)”. 实时模式:被调试的程序正在运行当中,调试器可以实 ...
- C# string byte[] Base64 常用互相转换
参考: http://www.cnblogs.com/zxx193/p/3605238.html?utm_source=tuicool http://www.cnblogs.com/freeliver ...
- Fast dev didn't succeed, trying another location
Android 调试时,出现快盘加载失败问题.调试输出如下: Fast dev didn't succeed, trying another location 解决办法: 将项目属性->Andr ...
- C#中,什么时候用yield return
yield关键字用于遍历循环中,yield return用于返回IEnumerable<T>,yield break用于终止循环遍历. 有这样的一个int类型的集合: static Lis ...
- IOS中为tableViewCell增加右侧标记(选中或者更多)
if ([self.selectWys containsObject:[self.initCitys objectAtIndex:indexPath.row]]) { tvCell.accessory ...
- Spring4.0+quartz2.2.1+memcahce多台nginx实现均衡
1.每台nginx都有公网地址,在域名处设置同个域名多个指向,最简单实现轮洵.但故障切负会慢一点.2.一台公网nginx通过upstream功能,轮洵.ip.url多方式分发到内网多台nginx.但公 ...
- 跨库查询(OpenDataSource)与链接服务器(Linking Server)
一:跨库查询 Openrowset/opendatasource() is an ad-hoc method to access remote server's data. So, if you on ...
- 洛谷P1772 [ZJOI2006]物流运输 题解
题目描述 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪. ...