Noip模拟题 Matrix [递推,组合数]
Matrix
时间限制: 1 Sec 内存限制: 512 MB
题目描述
Fi,j = a · Fi,j−1 + b · Fi−1,j
现在小 z 猜到了系数 a,b ,他想要计算 Fn,n 模 109 + 7 的值
输入
第二行 n 个数表示 l.
第三行 n 个数表示 t
输出
样例输入
4 3 5
4 1 7 3
4 7 4 8
样例输出
59716
提示
对于另外 20% 的数据,a = 0;
对于 100% 的数据,n, a, v, li, ti ≤ 105
分析:
大力推公式。
反正就从给定的公式下手,可以推出$f[n][n]$与$f[1][1\thicksim n]$和$f[1\thicksim n][1]$的关系,当然很显然需要用到组合。
实际上,$f[n][n]$只由$f[1][1\thicksim n]$和$f[1\thicksim n][1]$中的元素得到,并且从$f[1][1\thicksim n]$和$f[1\thicksim n][1]$的任一元素转移到$f[n][n]$的转移方式都是唯一的,这里推导过程就不再写了,直接写出结论:
$f[n][n]=\sum^n_{i=1}(f[1][i]*a^{n-1}*b^{n-i}*C^{n*2-i-2}_{n-2})+\sum^n_{i=1}(f[i][1]*a^{n-i}*b^{n-1}*C^{n*2-i-2}_{n-2})$
Code:
//It is made by HolseLee on 25th Oct 2018
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define mod (1000000007)
using namespace std; typedef long long ll;
const ll N=2e5+;
ll n,tot,A,B,x[N],y[N],a[N],b[N],aa[N],bb[N],ans; inline ll read()
{
char ch=getchar(); ll num=; bool flag=false;
while( ch<'' || ch>'' ) {
if( ch=='-' ) flag=true; ch=getchar();
}
while( ch>='' && ch<='' ) {
num=num*+ch-''; ch=getchar();
}
return flag ? -num : num;
} void ready()
{
tot=(n-)<<;
a[]=a[]=b[]=b[]=; aa[]=bb[]=, aa[]=A, bb[]=B;
for(ll i=; i<=tot; ++i) b[i]=b[i-]*i%mod;
for(ll i=; i<=tot; ++i) a[i]=(mod-mod/i)*a[mod%i]%mod;
for(ll i=; i<=tot; ++i) a[i]=a[i]*a[i-]%mod;
for(ll i=; i<=n; ++i) aa[i]=aa[i-]*A%mod;
for(ll i=; i<=n; ++i) bb[i]=bb[i-]*B%mod;
} inline ll getx(ll i)
{
ll ret=x[i]*aa[n-]%mod*bb[n-i]%mod;
ret=ret*b[tot-i+]%mod*a[tot-n-i+]%mod*a[n-]%mod;
return ret;
} inline ll gety(ll i)
{
ll ret=y[i]*bb[n-]%mod*aa[n-i]%mod;
ret=ret*b[tot-i+]%mod*a[tot-n-i+]%mod*a[n-]%mod;
return ret;
} int main()
{
n=read(); A=read(), B=read();
ready();
for(ll i=; i<=n; ++i) x[i]=read();
for(ll i=; i<=n; ++i) y[i]=read();
for(ll i=; i<=n; ++i) {
ans=(ans+getx(i))%mod;
}
for(ll i=; i<=n; ++i) {
ans=(ans+gety(i))%mod;
}
printf("%lld\n",ans);
return ;
}
Noip模拟题 Matrix [递推,组合数]的更多相关文章
- 2018.10.09 NOIP模拟 路途(递推+矩阵快速幂优化)
传送门 签到题.(考试的时候写挂爆0) 令AiA_iAi表示邻接矩阵的iii次幂. 于是就是求Al+Al+1+...+ArA_l+A_{l+1}+...+A_rAl+Al+1+...+Ar. ...
- NOIP模拟题汇总(加厚版)
\(NOIP\)模拟题汇总(加厚版) T1 string 描述 有一个仅由 '0' 和 '1' 组成的字符串 \(A\),可以对其执行下列两个操作: 删除 \(A\)中的第一个字符: 若 \(A\)中 ...
- 【入门OJ】2003: [Noip模拟题]寻找羔羊
这里可以复制样例: 样例输入: agnusbgnus 样例输出: 6 这里是链接:[入门OJ]2003: [Noip模拟题]寻找羔羊 这里是题解: 题目是求子串个数,且要求简单去重. 对于一个例子(a ...
- 9.9 NOIP模拟题
9.9 NOIP模拟题 T1 两个圆的面积求并 /* 计算圆的面积并 多个圆要用辛普森积分解决 这里只有两个,模拟计算就好 两圆相交时,面积并等于中间两个扇形面积减去两个三角形面积 余弦定理求角度,算 ...
- 8.22 NOIP 模拟题
8.22 NOIP 模拟题 编译命令 g++ -o * *.cpp gcc -o * *.c fpc *.pas 编译器版本 g++/gcc fpc 评测环境 位 Linux, .3GHZ CPU ...
- noip模拟题题解集
最近做模拟题看到一些好的题及题解. 升格思想: 核电站问题 一个核电站有N个放核物质的坑,坑排列在一条直线上.如果连续M个坑中放入核物质,则会发生爆炸,于是,在某些坑中可能不放核物质. 任务:对于给定 ...
- 一种递推组合数前缀和的Trick
记录一下一种推组合数前缀和的方法 Trick 设\(\sum_{i = 0}^m C_n^i = S(n, m)\) \(S\)是可以递推的 \(S(n, m + 1) = S(n, m) + C_{ ...
- bzoj3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛——递推 / 组合数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3398 对于这种有点巧妙的递推还是总是没有思路... 设计一个状态 f[i] 表示第 i 位置 ...
- NOIP模拟题17.9.26
B 君的任务(task)[题目描述]与君初相识,犹如故人归.B 君看到了Z 君的第一题,觉得很难.于是自己出了一个简单题.你需要完成n 个任务,第i 任务有2 个属性ai; bi.其中ai 是完成这个 ...
随机推荐
- 高维数据降维 国家自然科学基金项目 2009-2013 NSFC Dimensionality Reduction
2013 基于数据降维和压缩感知的图像哈希理论与方法 唐振军 广西师范大学 多元时间序列数据挖掘中的特征表示和相似性度量方法研究 李海林 华侨大学 基于标签和多特征融合的图像语义空间学习技 ...
- JS替换地址栏参数值
首先,页面引入JS代码片段(整体复制粘贴即可): var Query=function(a){"use strict";var b=function(a){var b=[],c,d ...
- Ex1—vlookup
VLOOKUP 的语法结构 整个计算机就相当于一门语言,首先我们就是要获取该函数的语法结构.以下是官网的语法结构 VLOOKUP(lookup_value, table_array, col_inde ...
- 【leetcode 简单】 第一百一十题 分发饼干
假设你是一位很棒的家长,想要给你的孩子们一些小饼干.但是,每个孩子最多只能给一块饼干.对每个孩子 i ,都有一个胃口值 gi ,这是能让孩子们满足胃口的饼干的最小尺寸:并且每块饼干 j ,都有一个尺寸 ...
- 关于maven环境下使用pom.xml引入包名.lastUpdate包的解决办法
今天在导入POI-OOXML的时候总是缺失xmlbeans包,而且刷新pom文件总是生成一个lastupdate文件,大小为1KB,终于找到解决办法. 1.首先删除想要的jar包所在文件夹内的所有 . ...
- 加密文件之Java改进版
对应Python版:加密文件之Python版Java版比Python版要快得多,两个版本不在一个量级上.在加密解密1G大文件时,Java版花费的时间是秒级,而Python版花费的时间是10分钟级. i ...
- PATH变量重复
命令: export PATH=$(echo $PATH | tr : "\n"| sort | uniq | tr "\n" :) Code: awk -F: ...
- nvm npm node.js的关系
nvm npm node.js都是用来构建reactNativ的项目 nvm管理node.j和npm版本的 node.js管理reactNative开发中所需要的代码库的 npm管理对应node ...
- Kaggle案例分析1--Bestbuy
1. 引言 Kaggle是一个进行数据挖掘和数据分析在线竞赛网站, 成立于2010年. 与Kaggle合作的公司可以提供一个数据+一个问题, 再加上适当的奖励, Kaggle上的计算机科学家和数据科学 ...
- 洛谷P3367并查集
传送门 #include <iostream> #include <cstdio> #include <cstring> #include <algorith ...