L1和L2特征的适用场景
How to decide which regularization (L1 or L2) to use?
Is there collinearity among some features? L2 regularization can improve prediction quality in this case, as implied by its alternative name, "ridge regression." However, it is true in general that either form of regularization will improve out-of-sample prediction, whether or not there is multicollinearity and whether or not there are irrelevant features, simply because of the shrinkage properties of the regularized estimators. L1 regularization can't help with multicollinearity; it will just pick the feature with the largest correlation to the outcome. Ridge regression can obtain coefficient estimates even when you have more features than examples... but the probability that any will be estimated precisely at 0 is 0.
What are the pros & cons of each of L1 / L2 regularization?
L1 regularization can't help with multicollinearity. L2 regularization can't help with feature selection. Elastic net regression can solve both problems. L1 and L2 regularization are taught for pedagogical reasons, but I'm not aware of any situation where you want to use regularized regressions but not try an elastic net as a more general solution, since it includes both as special cases.
实际使用过程中,如果数据量不是很大,用L2的精度要好。
多重共线性(multicollinearity)指的是你建模的时候,解释变量之间有高度相关性。

L1和L2特征的适用场景的更多相关文章
- 大白话5分钟带你走进人工智能-第十四节过拟合解决手段L1和L2正则
第十四节过拟合解决手段L1和L2正则 第十三节中, ...
- 【零基础】神经网络优化之L1、L2
一.序言 前面的文章中,我们逐步从单神经元.浅层网络到深层网络,并且大概搞懂了“向前传播”和“反向传播”的原理,比较而言深层网络做“手写数字”识别已经游刃有余了,但神经网络还存在很多问题,比如最常见的 ...
- paper 126:[转载] 机器学习中的范数规则化之(一)L0、L1与L2范数
机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化. ...
- 机器学习中的范数规则化之(一)L0、L1与L2范数
L1正则会产生稀疏解,让很多无用的特征的系数变为0,只留下一些有用的特征 L2正则不让某些特征的系数变为0,即不产生稀疏解,只让他们接近于0.即L2正则倾向于让权重w变小.见第二篇的推导. 所以,样本 ...
- 机器学习中的范数规则化之(一)L0、L1与L2范数(转)
http://blog.csdn.net/zouxy09/article/details/24971995 机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http: ...
- L0、L1与L2范数、核范数(转)
L0.L1与L2范数.核范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大 ...
- 机器学习中的范数规则化之(一)L0、L1与L2范数 非常好,必看
机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化. ...
- 机器学习中的范数规则化-L0,L1和L2范式(转载)
机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化. ...
- 大白话5分钟带你走进人工智能-第十五节L1和L2正则几何解释和Ridge,Lasso,Elastic Net回归
第十五节L1和L2正则几何解释和Ridge,Lasso,Elastic Net回归 上一节中我们讲解了L1和L2正则的概念,知道了L1和L2都会使不重要的维度权重下降得多,重要的维度权重下降得少,引入 ...
随机推荐
- Linux内核分析实验四----
一.用户态.内核态 权限分级——为了系统本身更稳定,使系统不宜崩溃.(并不是所有程序员缩写的代码都很健壮!!) x86 CPU四种不同的执行级别:0(内核态)—3(用户态) 区分方法:CS:EIP(C ...
- 20135239 益西拉姆 linux内核分析 扒开系统调用的三层皮(下)
一. 给MenuOS增加time-asm命令 代码解释 1.-rf:强制删除 2.clone :重新克隆 3.time-asm:显示系统时间的汇编形式 给MenuOS增加time和time-asm命令 ...
- C 语法中static 和inline联合使用
最近在学习阶段,翻阅代码.发现有一个用法比较让我奇怪,就上网查了一下 ? 1 static inline void somefunction(void); 这里是举例说明,这行代码是放在.h文件中的. ...
- bzoj 5015 [Snoi2017]礼物 矩阵乘法
5015: [Snoi2017]礼物 Time Limit: 15 Sec Memory Limit: 512 MBSubmit: 163 Solved: 115[Submit][Status][ ...
- Java入门:基础算法之从字符串中找到重复的字符
本程序演示从一个字符串中找出重复的字符,并显示重复字符的个数. import java.util.HashMap; import java.util.Map; import java.util.Set ...
- Docker Swarm 服务编排之命令
一.简介 Docker有个编排工具docker-compose,可以将组成某个应该的多个docker容器编排在一起,同时管理.同样在Swarm集群中,可以使用docker stack 将一组相关联的服 ...
- python3.6爬虫总结-01
1. HTTP 简介 HTTP常见状态码 200/OK: 请求成功 201/Created: 请求已被实现,且一个新资源已根据请求被建立,URI跟随Location头信息返回. 202/Accepte ...
- 数据分析与展示---Numpy数据存取与函数
简介 一:数据的CSV文件存取(一维或二维) (一)写入文件savetxt (二)读取文件loadtxt 二:多维数据的存取 (一)保存文件tofile (二)读取文件fromfile (三)NumP ...
- Java解决LeetCode72题 Edit Distance
题目描述 地址 : https://leetcode.com/problems/edit-distance/description/ 思路 使用dp[i][j]用来表示word1的0~i-1.word ...
- Java入门系列(三)面向对象三大特性之封装、继承、多态
面向对象综述 封装 封装的意义,在于明确标识出允许外部使用的所有成员函数和数据项,或者叫接口. 有了封装,就可以明确区分内外,使得类实现者可以修改封装内的东西而不影响外部调用者:而外部调用者也可以知道 ...