Question 1

Note: In this question, all columns will be written in their transposed form, as rows, to make the typography simpler. Matrix M has three rows and two columns, and the columns form an orthonormal basis. One of the columns is [2/7,3/7,6/7]. There are many options for the second column [x,y,z]. Write down those constraints on x, y, and z. Then, identi fy in the list below the one column that could be [x,y,z]. All components are computed to three decimal places, so the constraints may be satisfied only to a close approximation.
 
Your Answer   Score Explanation
[.485, -.485, .728]      
[.702, -.702, .117] Correct 1.00  
[-.702, .117, .702]      
[-.548, .401, .273]      
Total   1.00 / 1.00

Answer:

1. x^2+y^2+z^2 = 1

2. 2x/7+3y/7+6z/7 = 0

Question 2

Note: In this question, all columns will be written in their transposed form, as rows, to make the typography simpler. Matrix M has three rows and three columns, and the columns form an orthonormal basis. One of the columns is [2/7,3/7,6/7], and another is [6/7, 2/7, -3/7]. Let the third column be [x,y,z]. Since the length of the vector [x,y,z] must be 1, there is a constraint that x2+y2+z2 = 1. However, there are other constraints, and these other constraints can be used to deduce facts about the ratios among x, y, and z. Compute these ratios, and then identify one of them in the list below.
 
Your Answer   Score Explanation
y = -3z Correct 1.00  
y = 3z      
z = -3y      
z = 3y      
Total  

1.00 / 1.00

Answer:

2x+3y+6z = 0

6x+2y-3z = 0

The 3th col would be something like [-3 6 -2]

Question 3

Suppose we have three points in a two dimensional space: (1,1), (2,2), and (3,4). We want to perform PCA on these points, so we construct a 2-by-2 matrix whose eigenvectors are the directions that best represent these three points. Construct this matrix and identify, in the list below, one of its elements.
Your Answer   Score Explanation
19      
12      
17 Correct 1.00  
22      
Total   1.00 / 1.00

Question 4

Find, in the list below, the vector that is orthogonal to the vector [1,2,3]. Note: the interesting concept regarding eigenvectors is "orthonormal," that is unit vectors that are orthogonal. However, this question avoids using unit vectors to make the calculations simpler.
 
Your Answer   Score Explanation
[-1, -1, 1] Correct 1.00  
[0, 2, -1]      
[-1, 1, -1]      
[1, 1/2, 1/3]      
Total   1.00 / 1.00

Answer:

orthogonal : [1 2 3] * [-1 -1 1]^(-1) = [-1 -2 3];

-1-2+3 = 0

[Big Data] Week4B (Basic)的更多相关文章

  1. PHP 笔记一(systax/variables/echo/print/Data Type)

    PHP stands for "Hypertext Preprocessor" ,it is a server scripting language. What Can PHP D ...

  2. Data Transformation / Learning with Counts

    机器学习中离散特征的处理方法 Updated: August 25, 2016 Learning with counts is an efficient way to create a compact ...

  3. Sending form data

    https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms/Sending_and_retrieving_form_data This arti ...

  4. 基于ambari2.4.0进行二次开发

    目录 线上修改 源码结构 技术点 编译环境的搭建  安装samba 安装编译环境 整体编译 ambari-web的编译 WEB内容修改 wiki:https://cwiki.apache.org/co ...

  5. iOS基于MVC的项目重构总结

    关于MVC的争论 关于MVC的争论已经有很多,对此我的观点是:对于iOS开发中的绝大部分场景来说,MVC本身是没有问题的,你认为的MVC的问题,一定是你自己理解的问题(资深架构师请自动忽略本文). 行 ...

  6. 转:中间人攻击利用框架bettercap测试

    0x00前言 上篇提到内网渗透很有趣,这次就从一款新工具说起: bettercap 0x01简介 bettercap可用来实现各种中间人攻击,模块化,便携.易扩展 0x02特点 提到中间人攻击,最知名 ...

  7. I am Nexus Master!(虽然只是个模拟题。。。但仍想了很久!)

    I am Nexus Master!  The 13th Zhejiang University Programming Contest 参见:http://www.bnuoj.com/bnuoj/p ...

  8. CKEditor Html Helpers for ASP.NET MVC3 Razor/WebForms Views

    一.原生方法: 在 razor 中 使用Fckeditor 编辑内容,需要引入js <script src="@Url.Content("~/fckeditor/fckedi ...

  9. UESTC 1852 Traveling Cellsperson

    找规律水题... Traveling Cellsperson Time Limit: 1000ms Memory Limit: 65535KB This problem will be judged ...

随机推荐

  1. BZOJ 1975: [Sdoi2010]魔法猪学院 大水题 第k短路 spfa

    https://www.lydsy.com/JudgeOnline/problem.php?id=1975 我好像到现在了第k短路都不会写,mdzz. 先spfa求出最短路,然后扫点存各种前置路径已经 ...

  2. 【ZOJ】3740:Water Level【DP】

    Water Level Time Limit: 2 Seconds      Memory Limit: 65536 KB Hangzhou is a beautiful city, especial ...

  3. Shell 学习笔记之运算符

    基本运算符 算术运算符 val = expr 2 + 2 需要注意的是 表达式和运算符之间需要有空格(比如2 + 2,不能是2+2) 两边最外面的字符是`,在esc键下面,不是引号哦 乘号* 前面必须 ...

  4. [LeetCode] Pacific Atlantic Water Flow 题解

    题意 题目 思路 一开始想用双向广搜来做,找他们相碰的点,但是发现对其的理解还是不够完全,导致没写成功.不过,后来想清楚了,之前的错误可能在于从边界点进行BFS,其访问顺序应该是找到下一个比当前那个要 ...

  5. Python知识(7)--最小二乘求解

    这里展示利用python实现的最小二乘的直接求解方法.其求解原理,请参考:最小二乘法拟合非线性函数及其Matlab/Excel 实现 1.一般曲线拟合 代码如下: # -*- coding:utf-8 ...

  6. Git_工作区和暂存区

    Git和其他版本控制系统如SVN的一个不同之处就是有暂存区的概念. 先来看名词解释. 工作区(Working Directory):就是你在电脑里能看到的目录,比如我的learngit文件夹就是一个工 ...

  7. Spring <context:annotation-config/> 解说(转)

    在基于主机方式配置Spring的配置文件中,你可能会见到<context:annotation-config/>这样一条配置,他的作用是式地向 Spring 容器注册 AutowiredA ...

  8. BitmapFactory.Options.inSampleSize 的使用方法

    BitmapFactory.decodeFile(imageFile); 用BitmapFactory解码一张图片时.有时会遇到该错误. 这往往是因为图片过大造成的. 要想正常使用,则须要分配更少的内 ...

  9. 自定义MVC视图引擎ViewEngine 创建Model的专属视图

    MVC内置的视图引擎有WebForm view engine和Razor view engine,当然也可以自定义视图引擎ViewEngine.本文想针对某个Model,自定义该Model的专属视图. ...

  10. Java Web开发基础(2)-JSP

    上一篇博我粗略的介绍了一下Servlet.粗略是由于博主也刚刚学习这部分的内容,还不是非常懂所以无法讲的非常精细.可是本着二八原则,我还是先继续学习.所以,这篇博客接着JSP的内容.由于.这两个内容关 ...