Question 1

Note: In this question, all columns will be written in their transposed form, as rows, to make the typography simpler. Matrix M has three rows and two columns, and the columns form an orthonormal basis. One of the columns is [2/7,3/7,6/7]. There are many options for the second column [x,y,z]. Write down those constraints on x, y, and z. Then, identi fy in the list below the one column that could be [x,y,z]. All components are computed to three decimal places, so the constraints may be satisfied only to a close approximation.
 
Your Answer   Score Explanation
[.485, -.485, .728]      
[.702, -.702, .117] Correct 1.00  
[-.702, .117, .702]      
[-.548, .401, .273]      
Total   1.00 / 1.00

Answer:

1. x^2+y^2+z^2 = 1

2. 2x/7+3y/7+6z/7 = 0

Question 2

Note: In this question, all columns will be written in their transposed form, as rows, to make the typography simpler. Matrix M has three rows and three columns, and the columns form an orthonormal basis. One of the columns is [2/7,3/7,6/7], and another is [6/7, 2/7, -3/7]. Let the third column be [x,y,z]. Since the length of the vector [x,y,z] must be 1, there is a constraint that x2+y2+z2 = 1. However, there are other constraints, and these other constraints can be used to deduce facts about the ratios among x, y, and z. Compute these ratios, and then identify one of them in the list below.
 
Your Answer   Score Explanation
y = -3z Correct 1.00  
y = 3z      
z = -3y      
z = 3y      
Total  

1.00 / 1.00

Answer:

2x+3y+6z = 0

6x+2y-3z = 0

The 3th col would be something like [-3 6 -2]

Question 3

Suppose we have three points in a two dimensional space: (1,1), (2,2), and (3,4). We want to perform PCA on these points, so we construct a 2-by-2 matrix whose eigenvectors are the directions that best represent these three points. Construct this matrix and identify, in the list below, one of its elements.
Your Answer   Score Explanation
19      
12      
17 Correct 1.00  
22      
Total   1.00 / 1.00

Question 4

Find, in the list below, the vector that is orthogonal to the vector [1,2,3]. Note: the interesting concept regarding eigenvectors is "orthonormal," that is unit vectors that are orthogonal. However, this question avoids using unit vectors to make the calculations simpler.
 
Your Answer   Score Explanation
[-1, -1, 1] Correct 1.00  
[0, 2, -1]      
[-1, 1, -1]      
[1, 1/2, 1/3]      
Total   1.00 / 1.00

Answer:

orthogonal : [1 2 3] * [-1 -1 1]^(-1) = [-1 -2 3];

-1-2+3 = 0

[Big Data] Week4B (Basic)的更多相关文章

  1. PHP 笔记一(systax/variables/echo/print/Data Type)

    PHP stands for "Hypertext Preprocessor" ,it is a server scripting language. What Can PHP D ...

  2. Data Transformation / Learning with Counts

    机器学习中离散特征的处理方法 Updated: August 25, 2016 Learning with counts is an efficient way to create a compact ...

  3. Sending form data

    https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms/Sending_and_retrieving_form_data This arti ...

  4. 基于ambari2.4.0进行二次开发

    目录 线上修改 源码结构 技术点 编译环境的搭建  安装samba 安装编译环境 整体编译 ambari-web的编译 WEB内容修改 wiki:https://cwiki.apache.org/co ...

  5. iOS基于MVC的项目重构总结

    关于MVC的争论 关于MVC的争论已经有很多,对此我的观点是:对于iOS开发中的绝大部分场景来说,MVC本身是没有问题的,你认为的MVC的问题,一定是你自己理解的问题(资深架构师请自动忽略本文). 行 ...

  6. 转:中间人攻击利用框架bettercap测试

    0x00前言 上篇提到内网渗透很有趣,这次就从一款新工具说起: bettercap 0x01简介 bettercap可用来实现各种中间人攻击,模块化,便携.易扩展 0x02特点 提到中间人攻击,最知名 ...

  7. I am Nexus Master!(虽然只是个模拟题。。。但仍想了很久!)

    I am Nexus Master!  The 13th Zhejiang University Programming Contest 参见:http://www.bnuoj.com/bnuoj/p ...

  8. CKEditor Html Helpers for ASP.NET MVC3 Razor/WebForms Views

    一.原生方法: 在 razor 中 使用Fckeditor 编辑内容,需要引入js <script src="@Url.Content("~/fckeditor/fckedi ...

  9. UESTC 1852 Traveling Cellsperson

    找规律水题... Traveling Cellsperson Time Limit: 1000ms Memory Limit: 65535KB This problem will be judged ...

随机推荐

  1. [BZOJ5303][HAOI2018]反色游戏(Tarjan)

    暴力做法是列异或方程组后高斯消元,答案为2^自由元个数,可以得60分.但这个算法已经到此为止了. 从图论的角度考虑这个问题,当原图是一棵树时,可以从叶子开始唯一确定每条边的选择情况,所以答案为1. 于 ...

  2. hdoj 5120 Intersection 圆环面积求交

    Intersection Time Limit: 4000/4000 MS (Java/Others) Memory Limit: 512000/512000 K (Java/Others) Tota ...

  3. Mac OSX系统下通过ProxyChains-NG实现终端下的代理

    项目主页:https://github.com/rofl0r/proxychains-ng 官方说明: proxychains ng (new generation) - a preloader wh ...

  4. IE11 全新的F12开发者工具

      我讨厌debug,相信也没多少开发者会喜欢.但是当代码出错之后肯定是要找出问题出在哪里的.不过网页开发的时候遇到 BUG 是一件再正常不过的事情了,我们不能保证自己的代码万无一失,于是使用浏览器的 ...

  5. HDU 4726 Kia's Calculation(贪心)

    Kia's Calculation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  6. QN-H618 遥控器复制再生仪(拷贝机)

    针对现在市场上日益更新的遥控器种类,本公司经过长时间的研究,推出新一代拷贝机,本产品有以下特点: 1. 众多车库门遥控分析信息被集成在一台机器内,只要一种遥控器,就可以复制众多品牌的车库遥控.免去积压 ...

  7. mac securecrt无法记住密码的解决方法

    打开secureCRT,菜单preferences--general,找到mac options.然后去掉Use KeyChain选项,这样每次连接服务器后就会自动保存密码了.不同的版本可能这个选项的 ...

  8. 前端新手如何安装webstorm ,初步搭建react项目

    下载安装webstorm:配置成功: 配置成功后就可以开启webstorm项目了.(存微信收藏..) 1:在webstorm下配置node环境: 2:完成之后: React官方脚手架地址: https ...

  9. [Android UI] Activity Maintheme (Android 解决程序启动时的黑屏问题)

    <style name="MainTheme" parent="@android:style/Theme"> <item name=" ...

  10. python——获取数据类型:type()、isinstance()的使用方法:

    python——获取数据类型   在python中,可使用type()和isinstance()内置函数获取数据类型 如: (1)type()的使用方法: >>> a = '230' ...