LabelRank非重叠社区发现算法介绍及代码实现(A Stabilized Label Propagation Algorithm for Community Detection in Networks)
最近在研究基于标签传播的社区分类,LabelRank算法基于标签传播和马尔科夫随机游走思路上改装的算法,引用率较高,打算将代码实现,便于加深理解。
这个算法和Label Propagation 算法不同的是计算复杂度较高,对每个标签都确定了概率,但是准确性比Label Propagation算法好。
一、概念
相关概念不再累述,详情见前两篇文章
二、算法思路
首先建立一个标签集合,C={1,2,……n},n是节点的数量。标签概率向量Pi(1*n),Pi(c)=节点i对标签c的概率估计,迭代过程中每个节点的对标签c的概率估计等于其邻居节点对标签c的概率估计平均,详见公式(1)
有此可得n*n维标签概率矩阵P(i→j)=[p1,p2,...pn],迭代过程可以用矩阵乘法表示A*P,其中A是网络的邻接矩阵(01矩阵)。这个思路其实可以追溯到eigenvector Centrality算法1,文献1已证明P会收敛下来。就这样就完了吗?并没有看到如何传递标签或者选择标签?
作者做的就是不停地缩放P中元素,然后删除一些概率较小的标签从P中,不停地减少标签个数,知道每个节点的标签序列不再变化,迭代停止,拥有最大概率的标签就是节点所属的社区。具体流程见下
(1)Propagation
初始阶段,每个节点访问邻居概率皆相等,见公式(3),每次迭代即左乘上一阶段的P,得到本阶段节点对每个标签的预估概率
(2)Inflation
根据公式(2)不停地迭代,矩阵中0,计算复元素逐渐被取代,复杂度越来越高,流程(2)和(3)就是为减少复杂度而做的工作。首先利用公式(4)将矩阵中的元素极端处理,使值大的越来越大,值小的越来越小
(3)Cut off
这一阶段就是在公式(4)的基础上进行删除操作,将P中低于r的阈值全都置换成0,最终得到的P参与下一次迭代
(4)Explicit Conditional Update
减少算法的另一个途径就是满足某一条件的节点停止更新,具体操作就是如果节点的最大标签(对n个标签估计概率最高的那个标签)和他的邻居节点最大标签的吻合度高于q(提前给出,一般去0.7左右),那么这个节点就可以停止更新了
(5)Stop Criterion
每个节点的最大评估概率的标签不再变化,迭代停止,具有相同标签的节点归为一个社区
三、参考文献
[1]Poulin R, Boily M C, Mâsse B R. Dynamical systems to define centrality in social networks[J]. Social Networks, 2000, 22(3):187-220.
Dynamical systems to define centrality in social networks
[2]Xie J, Szymanski B K. LabelRank: A stabilized label propagation algorithm for community detection in networks[C]// Network Science Workshop. IEEE, 2013:138-143.
A Stabilized Label Propagation Algorithm for Community Detection in Networks
四、代码(matlab)
代码目前还有一点点问题,后期调试后再更新
function [R,count]=LabelR(A,in,r,q)
% LabelRank LabelRank: " A Stabilized Label Propagation
% Algorithm for Community Detection in Networks "
% Author: YY
% Created on 2017.05.09
% Inputs :
% A : adjacent matrix
% in : Inflation parameter
% : default =2
% q : Conditional Update parameter
% default = 0.7
% r : Cut off parameter
% : default = 0.1
% Output :
% R : community classfication
%%
% Step1 : Propagation
Aori=A;
A=A+eye(length(A));% add selfloop
k=repmat(sum(A,2),[1,length(A)]);
P0=A./k;
Ppre=A*P0;
a=1;
COM={};
count=0;
%%
% Step2: Inflation
while a
Pnow=A*Ppre;
Pin=Pnow.^in ;
k=repmat(sum(Pin,2),[1,length(A)]);
Pnow=Pin./k;
%%
% Step3: Cutoff
index= Pnow<r;
Pnow(index)=0;
%%
% Step4: Explicit Conditional Update
MaNow=max(Pnow,[],2);
MaPre=max(Ppre,[],2);
restart=[];
for i=1:length(A)
gain=0;
Nb=find( Aori(i,:));
MaxI=max(Pnow(i,:));
MaxI=find(Pnow(i,:)==MaxI);
MaxNb=MaNow(Nb);
for k=1:length(Nb)
MaxNbID=find(Pnow(Nb(k),:)==MaxNb(k));
if all(ismember(MaxI,MaxNbID));% 1,2和1;1和1,2;1,2和1,2,4或者1,3,4
gain=gain+1;
end
end
if gain>=q*length(Nb)
restart=[i,restart];
end
end
Pnow(restart,:)=Ppre(restart,:);
%%
% Step5: Stop Criterion
if all(ismember(find(Pnow(i,:)==MaNow(i)),find(Ppre(i,:)==MaPre(i))))
a=0;
end
Ppre=Pnow;
count=count+1;
end
R=Pnow;
end
LabelRank非重叠社区发现算法介绍及代码实现(A Stabilized Label Propagation Algorithm for Community Detection in Networks)的更多相关文章
- A Node Influence Based Label Propagation Algorithm for Community detection in networks 文章算法实现的疑问
这是我最近看到的一篇论文,思路还是很清晰的,就是改进的LPA算法.改进的地方在两个方面: (1)结合K-shell算法计算量了节点重重要度NI(node importance),标签更新顺序则按照NI ...
- Top Leaders社区发现算法(top leaders community detection approach in information networks)
一.概念 复杂网络:现实生活中各种系统都可以看做成复杂网络,复杂网络构成包括节点和边,节点是网络中的基本组成单元,节点之间的联系或者关系是网络中的边.例如 电力网络:基站代表节点,基站之间是否互通表示 ...
- 社区发现算法问题&&NetworkX&&Gephi
在做东西的时候用到了社区发现,因此了解了一下有关社区发现的一些问题 1,社区发现算法 (1)SCAN:一种基于密度的社团发现算法 Paper: <SCAN: A Structural Clust ...
- SLAP(Speaker-Listener Label Propagation Algorithm)社区发现算法
其中部分转载的社区发现SLPA算法文章 一.概念 社区(community)定义:同一社区内的节点与节点之间关系紧密,而社区与社区之间的关系稀疏. 设图G=G(V,E),所谓社区发现是指在图G中确定n ...
- GNN 相关资料记录;GCN 与 graph embedding 相关调研;社区发现算法相关;异构信息网络相关;
最近做了一些和gnn相关的工作,经常听到GCN 和 embedding 相关技术,感觉很是困惑,所以写下此博客,对相关知识进行索引和记录: 参考链接: https://www.toutiao.com/ ...
- 模块度与Louvain社区发现算法
Louvain算法是基于模块度的社区发现算法,该算法在效率和效果上都表现较好,并且能够发现层次性的社区结构,其优化目标是最大化整个社区网络的模块度. 模块度(Modularity) 模块度是评估一个社 ...
- 社区发现算法 - Fast Unfolding(Louvian)算法初探
1. 社团划分 0x1:社区是什么 在社交网络中,用户相当于每一个点,用户之间通过互相的关注关系构成了整个网络的结构. 在这样的网络中,有的用户之间的连接较为紧密,有的用户之间的连接关系较为稀疏.其中 ...
- 采样方法(二)MCMC相关算法介绍及代码实现
采样方法(二)MCMC相关算法介绍及代码实现 2017-12-30 15:32:14 Dark_Scope 阅读数 10509更多 分类专栏: 机器学习 版权声明:本文为博主原创文章,遵循CC 4 ...
- 标签传播算法(Label Propagation Algorithm, LPA)初探
0. 社区划分简介 0x1:非重叠社区划分方法 在一个网络里面,每一个样本只能是属于一个社区的,那么这样的问题就称为非重叠社区划分. 在非重叠社区划分算法里面,有很多的方法: 1. 基于模块度优化的社 ...
随机推荐
- yii2 beforeAction 重定向问题
不跳转代码:return $this->redirect('http://www.yiichina.com/'); 跳转代码:return $this->redirect('http:// ...
- 主机和docker容器拷贝文件
从主机复制到容器sudo docker cp host_path containerID:container_path 从容器复制到主机sudo docker cp containerID:conta ...
- python 编码方式大全 fr = open(filename_r,encoding='cp852')
7.8.3. Standard Encodings Python comes with a number of codecs built-in, either implemented as C fun ...
- generate
一:generate Verilog-2001添加了generate循环,允许产生module和primitive的多个实例化,同时也可以产生多个variable,net,task,function, ...
- 推荐:普通UI设计师与顶级UI设计师的区别是什么?(转)
我不是顶级设计师(我甚至不知道什么才叫顶级),即使见过的一些顶级(知名or优秀)设计师也因为交流不深入,无法评价.但是我勉强可以回答优秀的设计师,和普通的设计师(其实我觉得大部分的普通设计师只是认识他 ...
- 用Socket开发的一枚小型实时通信App
Socket 英文原意是插座. 在网络世界里, 当一台主机温柔而体贴的同时提供多个服务时, 每个服务被绑定在一个端口上, 而每个端口就好像一个小插座. 用户们连接对应的插座去获取相应的服务. 在Nod ...
- Windows10+Python3下安装NumPy+SciPy+Matplotlib
Numpy.SciPy.MatplotLib是Python下从事科学计算必不可少的库.我在用其他的方法安装时出现各种问题,发现直接安装.whl包是最快且不报错的方法. 1.下载.whl包在下面的网站中 ...
- struts2从浅之深(一)简介
一.Struts2简介 1.Struts2概述 Struts2是Apache发行的MVC开源框架.注意:它只是表现层(MVC)框架. M:model-----数据 ...
- (KMP 暴力)Corporate Identity -- hdu -- 2328
http://acm.hdu.edu.cn/showproblem.php?pid=2328 Corporate Identity Time Limit: 9000/3000 MS (Java/Oth ...
- 从窗口句柄得到菜单句柄(从HWND得到HMENU)
1. 如果HWND是主窗口,可以使用API: GetMenu(...) 得到属于主窗口的句柄,原型如下: HMENU GetMenu(HWND hWnd); 在MFC中原型如下: CMenu* Get ...