【BZOJ3238】[AHOI2013]差异
【BZOJ3238】[AHOI2013]差异
题面
给定字符串\(S\),令\(T_i\)表示以它从第\(i\)个字符开始的后缀。求
\]
其中\(len(a)\)表示串\(a\)的长度,\(lcp(a,b)\)表示串\(a,b\)的最长公共前缀
题解
把这个式子看作两边分开求:
Part1:
\Leftrightarrow\sum_{i=1}^{n-1}\sum_{j=i+1}^ni+j\\
=\sum_{i=1}^{n-1}i*(n-i)+\frac{(i+1+n)*(n-i)}2
\]
其实现在你就可以\(O(n)\)地求了,但是因为我出(kan)于(le)美(ti)观(jie)
发现它其实可以化成这样:
\]
Part2:
一看到后缀当然是\(sa\)啦
由后缀数组的性质,排名为分别为\(i,j\)的后缀,\(lcp_{i,j}=\min\limits_{k=i+1}^jheight_k\)
我们将所有高度数组排成一排,
假设中间的第\(i\)个数是\(l-r\)中最小的
则它的贡献就是\((i-l+1)*(r-i+1)\)
我们处理出来对\(i\)所有的\(l,r\)是不是就做出来了呢
这不就是一个单调栈的经典应用吗?
而这个题目中因为一些细节问题我的\(l\)表示小于\(i\)的第一个,\(r\)表示小于等于\(i\)的第一个
详见代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (!isdigit(ch) && ch != '-') ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar();
return w * data;
}
const int MAX_N = 5e5 + 5;
int N; char a[MAX_N];
int sa[MAX_N], lcp[MAX_N], rnk[MAX_N];
void GetSA() {
#define cmp(i, j, k) (y[i] == y[j] && y[i + k] == y[j + k])
static int x[MAX_N], y[MAX_N], bln[MAX_N];
int M = 122;
for (int i = 1; i <= N; i++) bln[x[i] = a[i]]++;
for (int i = 1; i <= M; i++) bln[i] += bln[i - 1];
for (int i = N; i >= 1; i--) sa[bln[x[i]]--] = i;
for (int k = 1; k <= N; k <<= 1) {
int p = 0;
for (int i = 0; i <= M; i++) y[i] = 0;
for (int i = N - k + 1; i <= N; i++) y[++p] = i;
for (int i = 1; i <= N; i++) if (sa[i] > k) y[++p] = sa[i] - k;
for (int i = 0; i <= M; i++) bln[i] = 0;
for (int i = 1; i <= N; i++) bln[x[y[i]]]++;
for (int i = 1; i <= M; i++) bln[i] += bln[i - 1];
for (int i = N; i >= 1; i--) sa[bln[x[y[i]]]--] = y[i];
swap(x, y); x[sa[1]] = p = 1;
for (int i = 2; i <= N; i++) x[sa[i]] = cmp(sa[i], sa[i - 1], k) ? p : ++p;
if (p >= N) break;
M = p;
}
}
void GetLcp() {
for (int i = 1; i <= N; i++) rnk[sa[i]] = i;
for (int i = 1, j = 0; i <= N; i++) {
if (j) --j;
while (a[i + j] == a[sa[rnk[i] - 1] + j]) ++j;
lcp[rnk[i]] = j;
}
}
typedef long long ll;
int lp[MAX_N], rp[MAX_N], stk[MAX_N], top;
int main () {
scanf("%s", a + 1); N = strlen(a + 1);
GetSA(); GetLcp();
ll ans = 0;
//for (int i = 1; i < N; i++) ans += 1ll * i * (N - i) + 1ll * (i + 1 + N) * (N - i) / 2ll;
ans = 1ll * N * (N + 1) * (N - 1) / 2ll;
stk[0] = 1;
for (int i = 2; i <= N; i++) {
while (top > 0 && lcp[stk[top]] >= lcp[i]) --top;
lp[i] = i - stk[top], stk[++top] = i;
}
top = 0, stk[0] = N + 1;
for (int i = N; i >= 2; i--) {
while (top > 0 && lcp[stk[top]] > lcp[i]) --top;
rp[i] = stk[top] - i, stk[++top] = i;
}
for (int i = 2; i <= N; i++) ans -= 2ll * lcp[i] * lp[i] * rp[i];
printf("%lld\n", ans);
return 0;
}
【BZOJ3238】[AHOI2013]差异的更多相关文章
- BZOJ3238 [Ahoi2013]差异 【SAM or SA】
BZOJ3238 [Ahoi2013]差异 给定一个串,问其任意两个后缀的最长公共前缀长度的和 1.又是后缀,又是\(lcp\),很显然直接拿\(SA\)的\(height\)数组搞就好了,配合一下单 ...
- bzoj3238 [Ahoi2013]差异 后缀数组+单调栈
[bzoj3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...
- [bzoj3238][Ahoi2013]差异_后缀数组_单调栈
差异 bzoj-3238 Ahoi-2013 题目大意:求任意两个后缀之间的$LCP$的和. 注释:$1\le length \le 5\cdot 10^5$. 想法: 两个后缀之间的$LCP$和显然 ...
- [BZOJ3238][AHOI2013]差异(后缀数组)
求和式的前两项可以直接算,问题是对于每对i,j计算LCP. 一个比较显然的性质是,LCP(i,j)是h[rk[i]+1~rk[j]]中的最小值. 从h的每个元素角度考虑,就是对每个h计算有多少对i,j ...
- [BZOJ3238][Ahoi2013]差异解题报告|后缀数组
Description 先分析一下题目,我们显然可以直接算出sigma(len[Ti]+len[Tj])的值=(n-1)*n*(n+1)/2 接着就要去算这个字符串中所有后缀的两两最长公共前缀总和 首 ...
- BZOJ3238 [Ahoi2013]差异 【后缀数组 + 单调栈】
题目链接 BZOJ3238 题解 简单题 经典后缀数组 + 单调栈套路,求所有后缀\(lcp\) #include<iostream> #include<cstdio> #in ...
- BZOJ3238: [Ahoi2013]差异 (后缀自动机)
Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Output 54 HINT 2<=N< ...
- BZOJ3238 [Ahoi2013]差异
首先把后缀数组和height数组都搞出来... 然后用两个单调栈维护$[l, r]$表示对于一个点$x$,满足$height[x] \le height[l..x] \ \&\&\ ...
- bzoj千题计划314:bzoj3238: [Ahoi2013]差异(后缀数组+st表+单调栈)
https://www.lydsy.com/JudgeOnline/problem.php?id=3238 跟 bzoj3879 差不多 #include<cstdio> #include ...
- 2018.12.21 bzoj3238: [Ahoi2013]差异(后缀自动机)
传送门 后缀自动机好题. 题意: 做法:samsamsam 废话 考虑翻转字串,这样后缀的最长公共前缀等于前缀的最长公共后缀. 然后想到parentparentparent树上面两个串的最长公共后缀跟 ...
随机推荐
- OAuth2.0 Owin 授权问题
http://www.cnblogs.com/dudu/p/4569857.html OAuth2.0 一.什么是OAuth OAuth是一个关于授权(Authorization)的开放网络标准,目前 ...
- MD5加密获得文件的MD5码
哈希函数将任意长度的二进制字符串映射为固定长度的小型二进制字符串.加密哈希函数有这样一个属性:在计算不大可能找到散列为相同的值的两个不同的输入:也就是说,两组数据的哈希值仅在对应的数据也匹配时才会匹配 ...
- css浮动的元素居中
<!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...
- 在 Microsoft Dynamics 365 Online中如何调试Plugins in
How to debug plugins in Microsoft Dynamics 365 Online 调试方式请查阅https://www.linkedin.com/pulse/how-debu ...
- 骗分大法之-----分块||迷之线段树例题a
什么是分块呢? 就是一种可以帮你骗到不少分的神奇的算法. 分块的写法有几种,我所知道的有①预处理②不预处理 不预处理的代码我看得一脸懵逼 所以我在这里就谈一下预处理的版本www 首先看一道题: 给定一 ...
- JDK 泛型之 Type
JDK 泛型之 Type 一.Type 接口 JDK 1.5 引入 Type,主要是为了泛型,没有泛型的之前,只有所谓的原始类型.此时,所有的原始类型都通过字节码文件类 Class 类进行抽象.Cla ...
- Java 8 接口中的默认方法与静态方法
Java 8 接口中的默认方法与静态方法 1. 接口中的默认方法 允许接口中包含具有具体实现的方法,该方法称"默认方法",默认方法使用用 default 关键字修饰. public ...
- <摘录>开源软件架构-ZeroMQ
原文链接:http://www.aosabook.org/en/zeromq.html ØMQ是一个消息通信系统,如果你愿意的话也可以称其为“面向消息的中间件”.ØMQ的应用环境很广泛,包括金融服务. ...
- 2018.09.15 秘密的牛奶管道SECRET(次小生成树)
描述 约翰叔叔希望能够廉价连接他的供水系统,但是他不希望他的竞争对手知道他选择的路线.一般这样的问题需要选择最便宜的方式,所以他决定避免这种情况而采用第二便宜的方式. 现在有W(3 <= W & ...
- 2018.07.28 uoj#164. 【清华集训2015】V(线段树)
传送门 线段树好题. 要求支持的操作: 1.区间变成max(xi−a,0)" role="presentation" style="position: rela ...