1007. Minimum Domino Rotations For Equal Row
In a row of dominoes,
A[i]andB[i]represent the top and bottom halves of thei-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.)We may rotate the
i-th domino, so thatA[i]andB[i]swap values.Return the minimum number of rotations so that all the values in
Aare the same, or all the values inBare the same.If it cannot be done, return
-1.
Example 1:
Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2]
Output: 2
Explanation:
The first figure represents the dominoes as given by A and B: before we do any rotations.
If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure.Example 2:
Input: A = [3,5,1,2,3], B = [3,6,3,3,4]
Output: -1
Explanation:
In this case, it is not possible to rotate the dominoes to make one row of values equal.
Note:
1 <= A[i], B[i] <= 62 <= A.length == B.length <= 20000
Approach #1: [Java]
class Solution {
public int minDominoRotations(int[] A, int[] B) {
int n = A.length;
for (int i = 0, a = 0, b = 0; i < n && (A[i] == A[0] || B[i] == A[0]); ++i) {
if (A[i] != A[0]) a++;
if (B[i] != A[0]) b++;
if (i == n-1) return Math.min(a, b);
}
for (int i = 0, a = 0, b = 0; i < n && (A[i] == B[0] || B[i] == B[0]); ++i) {
if (A[i] != B[0]) a++;
if (B[i] != B[0]) b++;
if (i == n-1) return Math.min(a, b);
}
return -1;
}
}
Analysis:
1. try A[0]
2. try B[0]
3. return -1;
one observation is that if A[0] and B[0] are all work, the result will be the same.
Approach #2. HashSet. [Java]
class Solution {
public int minDominoRotations(int[] A, int[] B) {
int n = A.length;
HashSet<Integer> set = new HashSet<>(Arrays.asList(1, 2, 3, 4, 5, 6));
int[] countA = new int[7], countB = new int[7];
for (int i = 0; i < n; ++i) {
set.retainAll(new HashSet<>(Arrays.asList(A[i], B[i])));
countA[A[i]]++;
countB[B[i]]++;
}
for (int s : set) return Math.min(n - countA[s], n - countB[s]);
return -1;
}
}
Analysis:
Find intersection s of {A[i], B[i]}.
s.size() == 0: no possible reslut.
s.size() == 1: one and only one reslut.
s.size() == 2: it means all dominoes are [a, b] or [b, a], try either one.
s.size() > 2: impossible.
Reference:
https://www.geeksforgeeks.org/arrays-aslist-method-in-java-with-examples/
https://www.geeksforgeeks.org/set-retainall-method-in-java-with-example/
1007. Minimum Domino Rotations For Equal Row的更多相关文章
- 【leetcode】1007. Minimum Domino Rotations For Equal Row
题目如下: In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. ( ...
- 【LeetCode】1007. Minimum Domino Rotations For Equal Row 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 遍历一遍 日期 题目地址:https://leetc ...
- [LC] 1007. Minimum Domino Rotations For Equal Row
In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domi ...
- [Swift]LeetCode1007. 行相等的最少多米诺旋转 | Minimum Domino Rotations For Equal Row
In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domi ...
- Minimum Domino Rotations For Equal Row LT1007
In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domi ...
- Leetcode: Minimum Domino Rotations For Equal Row
In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domin ...
- Swift LeetCode 目录 | Catalog
请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift 说明:题目中含有$符号则为付费题目. 如 ...
- 【Leetcode周赛】从contest-121开始。(一般是10个contest写一篇文章)
Contest 121 (题号981-984)(2019年1月27日) 链接:https://leetcode.com/contest/weekly-contest-121 总结:2019年2月22日 ...
- [ACM_图论] Domino Effect (POJ1135 Dijkstra算法 SSSP 单源最短路算法 中等 模板)
Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...
随机推荐
- C# Socket网络编程精华篇
我们在讲解Socket编程前,先看几个和Socket编程紧密相关的概念: TCP/IP层次模型 当然这里我们只讨论重要的四层 01,应用层(Application):应用层是个很广泛的概念,有一些基本 ...
- Scrum使用心得 【转】
原文链接: http://blog.sina.com.cn/s/blog_58db96bc0100ymuk.html 1 Scrum管理模式和传统管理模式的区别 这些管理模式本质上目的相同: ...
- html转义字符对照表
常用的html转义字符 字符 描述 实体名称 实体编号 " quotation mark(双引号“半角”) " " ' apostrophe (单引号‘半角’) & ...
- 2018.09.02 bzoj1025: [SCOI2009]游戏(计数dp+线筛预处理)
传送门 要将所有置换变成一个轮换,显然轮换的周期是所有置换长度的最小公倍数. 于是我们只需要求长度不超过n,且长度最小公倍数为t的不同置换数. 而我们知道,lcm只跟所有素数的最高位有关. 因此lcm ...
- Django入门与实践-第21章:迁移(完结)
http://127.0.0.1:8000/boards/1/ python manage.py migrate #boards/models.py class Topic(models.Model) ...
- hadoop学习笔记(四):hdfs常用命令
一.hadoop fs 1.创建目录 [root@master hadoop-]# hadoop fs -mkdir /testdir1 [root@master hadoop-]# hadoop f ...
- 201709021工作日记--Volley源码解读(四)
接着volley源码(三)继续,本来是准备写在(三)后面的,但是博客园太垃圾了,写了半天居然没保存上,要不是公司这个博客还没被限制登陆,鬼才用这个...真是垃圾 继续解读RequestQueue的源码 ...
- MySQL性能调优与架构设计——第 14 章 可扩展性设计之数据切分
第 14 章 可扩展性设计之数据切分 前言 通过 MySQL Replication 功能所实现的扩展总是会受到数据库大小的限制,一旦数据库过于庞大,尤其是当写入过于频繁,很难由一台主机支撑的时候,我 ...
- day04(权限修饰符,内部类,局部内部类,匿名内部类)
权限修饰符, Public >protected >default > private public 公共权限 随便都可以访问 protected 子类可以访问权限 (子类 ...
- (最短路 dijkstra)昂贵的聘礼 -- poj -- 1062
链接: http://poj.org/problem?id=1062 昂贵的聘礼 Time Limit: 1000MS Memory Limit: 10000K Total Submissions ...
