# coding:utf-8
import pandas as pd
import numpy as np
from pandas import Series,DataFramefrom sklearn.decomposition import PCA# 1、数据读取
data1=pd.read_excel('\谐波数据\YD_10.xlsx') #PCA是主成分降维的构造器
data2 = data1.iloc[::,1:51]
data3 = data2 # 2、S主成分降维思想
# 里面的参数 n_coponentes 这个主要是取出多少个主成分来进行描述,whiten 主要是标准方差相同的问题
pca = PCA(n_components= 20,whiten= True,svd_solver='randomized')
#
pca.fit(data3) #里面可以传入需要降维的数据矩阵
data4= pca.fit_transform(data3) #降维过后的数据
gxl = pca.explained_variance_ratio_ # 输出累计贡献率
# data4 = DataFrame(data4) #这个是把数据转化为dataframe类型
data5 = data4.reshape(-1)
data5 = DataFrame(data5).T
print(data5.shape,'\n',type(data5))
print(sum(gxl)) # 3、矩阵缩放,特征不变
from scipy.misc import imresize
n_1 = np.array(data2)
# n_1 = np.random.randint(0,10,[20,20])
da_ta = imresize(data2, (100,50))
print(da_ta.shape)
print(da_ta[50:60,40::])

sklearn_PCA主成分降维的更多相关文章

  1. PCA:利用PCA(四个主成分的贡献率就才达100%)降维提高测试集辛烷值含量预测准确度并《测试集辛烷值含量预测结果对比》—Jason niu

    load spectra; temp = randperm(size(NIR, 1)); P_train = NIR(temp(1:50),:); T_train = octane(temp(1:50 ...

  2. [吴恩达机器学习笔记]14降维5-7重建压缩表示/主成分数量选取/PCA应用误区

    14.降维 觉得有用的话,欢迎一起讨论相互学习~Follow Me 14.5重建压缩表示 Reconstruction from Compressed Representation 使用PCA,可以把 ...

  3. HAWQ + MADlib 玩转数据挖掘之(六)——主成分分析与主成分投影

    一.主成分分析(Principal Component Analysis,PCA)简介 在数据挖掘中经常会遇到多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性.例如,网站的" ...

  4. R语言实战(九)主成分和因子分析

    本文对应<R语言实战>第14章:主成分和因子分析 主成分分析(PCA)是一种数据降维技巧,它能将大量相关变量转化为一组很少的不相关变量,这些无关变量成为主成分. 探索性因子分析(EFA)是 ...

  5. 机器学习:PCA(使用梯度上升法求解数据主成分 Ⅰ )

    一.目标函数的梯度求解公式 PCA 降维的具体实现,转变为: 方案:梯度上升法优化效用函数,找到其最大值时对应的主成分 w : 效用函数中,向量 w 是变量: 在最终要求取降维后的数据集时,w 是参数 ...

  6. R in action读书笔记(19)第十四章 主成分和因子分析

    第十四章:主成分和因子分析 本章内容 主成分分析 探索性因子分析 其他潜变量模型 主成分分析(PCA)是一种数据降维技巧,它能将大量相关变量转化为一组很少的不相关变量,这些无关变量称为主成分.探索性因 ...

  7. [读书笔记] R语言实战 (十四) 主成分和因子分析

    主成分分析和探索性因子分析是用来探索和简化多变量复杂关系的常用方法,能解决信息过度复杂的多变量数据问题. 主成分分析PCA:一种数据降维技巧,将大量相关变量转化为一组很少的不相关变量,这些无关变量称为 ...

  8. 【笔记】求数据前n个主成分以及对高维数据映射为低维数据

    求数据前n个主成分并进行高维数据映射为低维数据的操作 求数据前n个主成分 先前的将多个样本映射到一个轴上以求使其降维的操作,其中的样本点本身是二维的样本点,将其映射到新的轴上以后,还不是一维的数据,对 ...

  9. 【笔记】求数据的对应主成分PCA(第一主成分)

    求数据的第一主成分 (在notebook中) 将包加载好,再创建出一个虚拟的测试用例,生成的X有两个特征,特征一为0到100之间随机分布,共一百个样本,对于特征二,其和特征一有一个基本的线性关系(为什 ...

随机推荐

  1. Linux_Apache 安装

    1.下载依赖扩展 apr.apr-util.pcre(正则依赖) https://apr.apache.org/download.cgi#aprutil1 apr:http://mirrors.shu ...

  2. java将字符串存入GridF并通过id或文件名查询

    import static org.bson.codecs.configuration.CodecRegistries.fromProviders; import static org.bson.co ...

  3. POJ2391_Ombrophobic Bovines

    有F个地方,每个地方有一定数量的牛,能够容纳一定数量的牛,某些地方之间有边,表示走两点之间需要消耗的时间. 现在求使得所有的牛都被容纳所需要的最少的时间. 由于时间是一个不确定的因素,我们需要二分. ...

  4. PGM学习之三 朴素贝叶斯分类器(Naive Bayes Classifier)

    介绍朴素贝叶斯分类器的文章已经很多了.本文的目的是通过基本概念和微小实例的复述,巩固对于朴素贝叶斯分类器的理解. 一 朴素贝叶斯分类器基础回顾 朴素贝叶斯分类器基于贝叶斯定义,特别适用于输入数据维数较 ...

  5. BZOJ5120 无限之环(费用流)

    方案合法相当于要求接口之间配对,黑白染色一波,考虑网络流.有一个很奇怪的限制是不能旋转直线型水管,考虑非直线型水管有什么特殊性,可以发现其接口都是连续的.那么对于旋转水管,可以看做是把顺/逆时针方向上 ...

  6. 【数学】【CF1091D】 New Year and the Permutation Concatenation

    Description 给定一个数 \(n\),将所有 \(1~\sim~n\) 的排列按照字典序放到一个序列中,求有多少长度为 \(n\) 的子序列 \(p_i~p_{i+1}~\dots~p_{i ...

  7. 把矩阵分成n*m个块,从任意一个块出发,问是否可以一笔画遍历矩阵中所有的块

  8. android studio 代码混淆如何忽略第三方jar包

    日前在打包混淆包含第三方jar包的Android studio项目时 报出了各种错误,但是debug版本却能正常运行,于是怀疑android studio 打包的时候把第三方jar包给混淆了,第三方j ...

  9. poj 3415 后缀数组 两个字符串中长度不小于 k 的公共子串的个数

    Common Substrings Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 11469   Accepted: 379 ...

  10. php与Git下基于webhook的自动化部署

    前言 2018年第一篇文章,没啥技术含量,权当笔记 我们一般都会用git或者svn来管理我们的代码 每次代码更新后还要手动的去把服务器上的代码也更新一遍 项目小了还好 项目大了着实浪费时间 要是服务器 ...