图片人脸检测

人脸检测使用到的技术是OpenCV,上一节已经介绍了OpenCV的环境安装,点击查看.

功能展示

识别一种图上的所有人的脸,并且标出人脸的位置,画出人眼以及嘴的位置,展示效果图如下:

多张脸识别效果图:

技术实现思路

图片转换成灰色(降低为一维的灰度,减低计算强度)

图片上画矩形

使用训练分类器查找人脸

具体实现代码

图片转换成灰色

使用OpenCV的cvtColor()转换图片颜色,代码如下:

import cv2

filepath = "img/xingye-1.jpg"
img = cv2.imread(filepath)
# 转换灰色
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 显示图像
cv2.imshow("Image", gray)
cv2.waitKey(0)
cv2.destroyAllWindows()

图片上画矩形

使用OpenCV的rectangle()绘制矩形,代码如下:

import cv2

filepath = "img/xingye-1.jpg"
img = cv2.imread(filepath) # 读取图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 转换灰色
x = y = 10 # 坐标
w = 100 # 矩形大小(宽、高)
color = (0, 0, 255) # 定义绘制颜色
cv2.rectangle(img, (x, y), (x + w, y + w), color, 1) # 绘制矩形
cv2.imshow("Image", img) # 显示图像
cv2.waitKey(0)
cv2.destroyAllWindows() # 释放所有的窗体资源

使用训练分类器查找人脸

在使用OpenCV的人脸检测之前,需要一个人脸训练模型,格式是xml的,我们这里使用OpenCV提供好的人脸分类模型xml,下载地址:https://github.com/opencv/opencv/tree/master/data/haarcascades 可全部下载到本地,本人存放的路径是:C:\Python36\Lib\site-packages\opencv-master\data\haarcascades.

完整实现代码:

import cv2

filepath = "img/xingye-1.jpg"
img = cv2.imread(filepath) # 读取图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 转换灰色 # OpenCV人脸识别分类器
classifier = cv2.CascadeClassifier(
"C:\Python36\Lib\site-packages\opencv-master\data\haarcascades\haarcascade_frontalface_default.xml"
)
color = (0, 255, 0) # 定义绘制颜色
# 调用识别人脸
faceRects = classifier.detectMultiScale(
gray, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))
if len(faceRects): # 大于0则检测到人脸
for faceRect in faceRects: # 单独框出每一张人脸
x, y, w, h = faceRect
# 框出人脸
cv2.rectangle(img, (x, y), (x + h, y + w), color, 2)
# 左眼
cv2.circle(img, (x + w // 4, y + h // 4 + 30), min(w // 8, h // 8),
color)
#右眼
cv2.circle(img, (x + 3 * w // 4, y + h // 4 + 30), min(w // 8, h // 8),
color)
#嘴巴
cv2.rectangle(img, (x + 3 * w // 8, y + 3 * h // 4),
(x + 5 * w // 8, y + 7 * h // 8), color) cv2.imshow("image", img) # 显示图像
c = cv2.waitKey(10) cv2.waitKey(0)
cv2.destroyAllWindows()

分类器classifier.detectMultiScale(gray, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))参数说明:

gray:转换的灰图厦工叉车

scaleFactor:图像缩放比例,可理解为相机的X倍镜

minNeighbors:对特征检测点周边多少有效点同时检测,这样可避免因选取的特征检测点太小而导致遗漏

minSize:特征检测点的最小尺寸

图片人脸检测(OpenCV版)的更多相关文章

  1. 图片人脸检测——OpenCV版(二)

    图片人脸检测 人脸检测使用到的技术是OpenCV,上一节已经介绍了OpenCV的环境安装,点击查看. 往期目录 视频人脸检测——Dlib版(六)OpenCV添加中文(五)图片人脸检测——Dlib版(四 ...

  2. 视频人脸检测——OpenCV版(三)

    视频人脸检测是图片人脸检测的高级版本,图片检测详情点击查看我的上一篇<图片人脸检测——OpenCV版(二)> 实现思路: 调用电脑的摄像头,把摄像的信息逐帧分解成图片,基于图片检测标识出人 ...

  3. 图片人脸检测——Dlib版(四)

    上几篇给大家讲了OpenCV的图片人脸检测,而本文给大家带来的是比OpenCV更加精准的图片人脸检测Dlib库. 点击查看往期: <图片人脸检测——OpenCV版(二)> <视频人脸 ...

  4. 视频人脸检测——Dlib版(六)

    往期目录 视频人脸检测--Dlib版(六) OpenCV添加中文(五) 图片人脸检测--Dlib版(四) 视频人脸检测--OpenCV版(三) 图片人脸检测--OpenCV版(二) OpenCV环境搭 ...

  5. 在opencv3中进行图片人脸检测

    在opencv中,人脸检测用的是harr或LBP特征,分类算法用的是adaboost算法.这种算法需要提前训练大量的图片,非常耗时,因此opencv已经训练好了,把训练结果存放在一些xml文件里面.在 ...

  6. 25行 Python 代码实现人脸检测——OpenCV 技术教程

    这是篇是利用 OpenCV 进行人脸识别的技术讲解.阅读本文之前,这是注意事项: 建议先读一遍本文再跑代码——你需要理解这些代码是干什么的.成功跑一遍不是目的,能够举一反三.在新任务上找出 bug 才 ...

  7. C#使用Emgu CV来进行图片人脸检测

    项目需求:某市级组织考试,在考试前需审核考生采集表中的考生照片是否合格,由于要审核的考生信息采集表有很多,原先进行的是手动人工审核,比较费时费力,审核的要求也很简单,并不判断考生是否是图片本人(身份验 ...

  8. 使用python实现人脸检测

    人脸检测 人脸检测使用到的技术是OpenCV,上一节已经介绍了OpenCV的环境安装,点击查看. 功能展示 识别一种图上的所有人的脸,并且标出人脸的位置,画出人眼以及嘴的位置,展示效果图如下: 多张脸 ...

  9. OpenCV 学习笔记 05 人脸检测和识别

    本节将介绍 Haar 级联分类器,通过对比分析相邻图像区域来判断给定图像或子图像与已知对象是否匹配. 本章将考虑如何将多个  Haar 级联分类器构成一个层次结构,即一个分类器能识别整体区域(如人脸) ...

随机推荐

  1. django restframework 快速入门

    django restframework 快速入门 基本流程 建立 Models 依靠 Serialiers 将数据库取出的数据 Parse 为 API 的数据(可用于返回给客户端,也可用于浏览器显示 ...

  2. 安装framework 4.6.2的时报错 “无法建立到信任根颁发机构的证书链”

    解决方案: 1.下载证书:MicrosoftRootCertificateAuthority2011.cer 2.开始→运行→MMC 3.文件→添加删除管理单元 (Ctrl+M) 4.证书→计算机账户 ...

  3. Nginx代理

    Nginx 介绍:高性能的http服务器和反向代理(请求通过反向代理之后,访问服务器端的逻辑)如下图所示: Ningx的作用 负载均衡 所谓负载就是服务器各项技术所承受的压力 均衡,平均分配压力(物理 ...

  4. mysql关于视图的用法以及作用

    关于视图的用法以及作用. 作用一: 提高了重用性,就像一个函数.如果要频繁获取user的name和goods的name.就应该使用以下sql语言.示例: select a.name as userna ...

  5. jQuery----初识jQuery

    一.jQuery好处: ①写得少,做的多 ②链式编程 ③隐式迭代 ④解决兼容性问题 二.顶级对象 Dom中的顶级对象:document------>页面中的顶级对象 document.点出来的是 ...

  6. u-boot-1.1.6环境变量

    学习目标: 1.分析u-boot-1.1.6环境变量,了解环境变量初始化.设置以及过程 2.为后面能够掌握u-boot-1.1.6如何启动内核过程打下基础 1.环境变量的概念 在分析uboot环境变量 ...

  7. Linux-2.6_LCD驱动学习

    内核自带的驱动LCD,drivers/video/Fbmem.c LCD驱动程序 假设app: open("/dev/fb0", ...) 主设备号: 29, 次设备号: 0--- ...

  8. 15 [网络编程]-ssh远程命令

    1.执行命令os.system('ls') os.system 返回1 or 0  ,不能当做数据发送 # windows # dir 查看某个文件夹下子自文件名与子文件夹名 # ipconfig 查 ...

  9. 前端- css - 总结

    1.css层叠样式表 1.什么是CSS? CSS是指层叠样式表(Cascading Style Sheets),样式定义如何显示HTML元素,样式通常又会存在于样式表中. 也就是说把HTML元素的样式 ...

  10. 洛咕 P2463 [SDOI2008]Sandy的卡片

    哈希水过. 首先这是一段delta相同的序列,按照套路差分一下,b[i]=a[i]-a[i-1],然后就是这些序列的最长公共子段 由于数据范围很小,就可以二分,枚举第一个序列的子段然后每个子序列暴力c ...