通过spark实现点击流日志分析案例

1. 访问的pv

package cn.itcast

  import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} object PV {
def main(args: Array[String]): Unit = {
//todo:创建sparkconf,设置appName
//todo:setMaster("local[2]")在本地模拟spark运行 这里的数字表示 使用2个线程
val sparkConf: SparkConf = new SparkConf().setAppName("PV").setMaster("local[2]") //todo:创建SparkContext
val sc: SparkContext = new SparkContext(sparkConf) //todo:读取数据
val file: RDD[String] = sc.textFile("d:\\data\\access.log") //todo:将一行数据作为输入,输出("pv",1)
val pvAndOne: RDD[(String, Int)] = file.map(x=>("pv",1)) //todo:聚合输出
val totalPV: RDD[(String, Int)] = pvAndOne.reduceByKey(_+_)
totalPV.foreach(println) sc.stop()
}
}

2. 访问的uv

package cn.itcast

  import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} object UV {
def main(args: Array[String]): Unit = {
//todo:构建SparkConf和 SparkContext
val sparkConf: SparkConf = new SparkConf().setAppName("UV").setMaster("local[2]") val sc: SparkContext = new SparkContext(sparkConf) //todo:读取数据
val file: RDD[String] = sc.textFile("d:\\data\\access.log") //todo:对每一行分隔,获取IP地址
val ips: RDD[(String)] = file.map(_.split(" ")).map(x=>x(0)) //todo:对ip地址进行去重,最后输出格式 ("UV",1)
val uvAndOne: RDD[(String, Int)] = ips.distinct().map(x=>("UV",1)) //todo:聚合输出
val totalUV: RDD[(String, Int)] = uvAndOne.reduceByKey(_+_)
totalUV.foreach(println) //todo:数据结果保存
totalUV.saveAsTextFile("d:\\data\\out") sc.stop()
}
}

3. 访问的topN

package cn.itcast

  import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} /**
* 求访问的topN
*/
object TopN {
def main(args: Array[String]): Unit = {
val sparkConf: SparkConf = new SparkConf().setAppName("TopN").setMaster("local[2]") val sc: SparkContext = new SparkContext(sparkConf)
sc.setLogLevel("WARN") //读取数据
val file: RDD[String] = sc.textFile("d:\\data\\access.log") //将一行数据作为输入,输出(来源URL,1)
val refUrlAndOne: RDD[(String, Int)] = file.map(_.split(" ")).filter(_.length>10).map(x=>(x(10),1)) //聚合 排序-->降序
val result: RDD[(String, Int)] = refUrlAndOne.reduceByKey(_+_).sortBy(_._2,false) //通过take取topN,这里是取前5名
val finalResult: Array[(String, Int)] = result.take(5)
println(finalResult.toBuffer) sc.stop()
}
}

通过Spark实现ip地址查询

1. 需求分析

在互联网中,我们经常会见到城市热点图这样的报表数据,例如在百度统计中,会统计今年的热门旅游城市、热门报考学校等,会将这样的信息显示在热点图中。

因此,我们需要通过日志信息(运行商或者网站自己生成)和城市ip段信息来判断用户的ip段,统计热点经纬度。

2. 技术调研

因为我们的需求是完成一张报表信息,所以对程序的实时性没有要求,所以可以选择内存计算spark来实现上述功能。

3. 架构设计

搭建spark集群

4. 开发流程

4.1. 数据准备

4.2. ip日志信息

在ip日志信息中,我们只需要关心ip这一个维度就可以了,其他的不做介绍

4.3. 城市ip段信息

5. 代码开发

5.1. 思路

1、  加载城市ip段信息,获取ip起始数字和结束数字,经度,维度

2、  加载日志数据,获取ip信息,然后转换为数字,和ip段比较

3、  比较的时候采用二分法查找,找到对应的经度和维度

4、  然后对经度和维度做单词计数

5.2. 代码

package cn.itcast.IPlocaltion

  import java.sql.{Connection, DriverManager, PreparedStatement}
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} /**
* ip地址查询
*/
object IPLocaltion_Test {
def main(args: Array[String]): Unit = {
//todo:创建sparkconf 设置参数
val sparkConf: SparkConf = new SparkConf().setAppName("IPLocaltion_Test").setMaster("local[2]") //todo:创建SparkContext
val sc = new SparkContext(sparkConf) //todo:读取基站数据
val data: RDD[String] = sc.textFile("d:\\data\\ip.txt") //todo:对基站数据进行切分 ,获取需要的字段 (ipStart,ipEnd,城市位置,经度,纬度)
val jizhanRDD: RDD[(String, String, String, String, String)] = data.map(_.split("\\|")).map( x => (x(2), x(3), x(4) + "-" + x(5) + "-" + x(6) + "-" + x(7) + "-" + x(8), x(13), x(14))) //todo:获取RDD的数据
val jizhanData: Array[(String, String, String, String, String)] = jizhanRDD.collect() //todo:广播变量,一个只读的数据区,所有的task都能读到的地方
val jizhanBroadcast: Broadcast[Array[(String, String, String, String, String)]] = sc.broadcast(jizhanData) //todo:读取目标数据
val destData: RDD[String] = sc.textFile("d:\\data\\20090121000132.394251.http.format") //todo:获取数据中的ip地址字段
val ipData: RDD[String] = destData.map(_.split("\\|")).map(x=>x(1)) //todo:把IP地址转化为long类型,然后通过二分法去基站数据中查找,找到的维度做wordCount
val result=ipData.mapPartitions(iter=>{ //获取广播变量中的值
val valueArr: Array[(String, String, String, String, String)] = jizhanBroadcast.value //todo:操作分区中的itertator
iter.map(ip=>{
//将ip转化为数字long
val ipNum:Long=ipToLong(ip) //拿这个数字long去基站数据中通过二分法查找,返回ip在valueArr中的下标
val index:Int=binarySearch(ipNum,valueArr) //根据下标获取对一个的经纬度
val tuple = valueArr(index) //返回结果 ((经度,维度),1)
((tuple._4,tuple._5),1)
})
}) //todo:分组聚合
val resultFinal: RDD[((String, String), Int)] = result.reduceByKey(_+_) //todo:打印输出
resultFinal.foreach(println) //todo:将结果保存到mysql表中
resultFinal.map(x=>(x._1._1,x._1._2,x._2)).foreachPartition(data2Mysql)
sc.stop()
} //todo:ip转为long类型
def ipToLong(ip: String): Long = {
//todo:切分ip地址。
val ipArray: Array[String] = ip.split("\\.")
var ipNum=0L for(i <- ipArray){
ipNum=i.toLong | ipNum << 8L
}
ipNum
} //todo:通过二分查找法,获取ip在广播变量中的下标
def binarySearch(ipNum: Long, valueArr: Array[(String, String, String, String, String)]): Int ={
//todo:口诀:上下循环寻上下,左移右移寻中间
//开始下标
var start=0 //结束下标
var end=valueArr.length-1 while(start<=end){
val middle=(start+end)/2 if(ipNum>=valueArr(middle)._1.toLong && ipNum<=valueArr(middle)._2.toLong){
return middle
}
if(ipNum > valueArr(middle)._2.toLong){
start=middle
} if(ipNum<valueArr(middle)._1.toLong){
end=middle
}
}
-1
} //todo:数据保存到mysql表中
def data2Mysql(iterator:Iterator[(String,String, Int)]):Unit = {
//todo:创建数据库连接Connection
var conn:Connection=null //todo:创建PreparedStatement对象
var ps:PreparedStatement=null //todo:采用拼占位符问号的方式写sql语句。
var sql="insert into iplocaltion(longitude,latitude,total_count) values(?,?,?)" //todo:获取数据连接 conn=DriverManager.getConnection("jdbc:mysql://itcast01:3306/spark","root","root123") //todo: 选中想被try/catch包围的语句 ctrl+alt+t 快捷键选中try/catch/finally
try {
iterator.foreach(line=> {
//todo:预编译sql语句
ps = conn.prepareStatement(sql) //todo:对占位符设置值,占位符顺序从1开始,第一个参数是占位符的位置,第二个参数是占位符的值。
ps.setString(1, line._1)
ps.setString(2, line._2)
ps.setLong(3, line._3) //todo:执行
ps.execute()
})
} catch {
case e:Exception =>println(e)
} finally {
if(ps!=null){
ps.close()
} if (conn!=null){
conn.close()
}
}
}
}

SparkRDD编程实战的更多相关文章

  1. 【Java并发编程实战】----- AQS(四):CLH同步队列

    在[Java并发编程实战]-–"J.U.C":CLH队列锁提过,AQS里面的CLH队列是CLH同步锁的一种变形.其主要从两方面进行了改造:节点的结构与节点等待机制.在结构上引入了头 ...

  2. 【Java并发编程实战】----- AQS(三):阻塞、唤醒:LockSupport

    在上篇博客([Java并发编程实战]----- AQS(二):获取锁.释放锁)中提到,当一个线程加入到CLH队列中时,如果不是头节点是需要判断该节点是否需要挂起:在释放锁后,需要唤醒该线程的继任节点 ...

  3. 【Java并发编程实战】----- AQS(二):获取锁、释放锁

    上篇博客稍微介绍了一下AQS,下面我们来关注下AQS的所获取和锁释放. AQS锁获取 AQS包含如下几个方法: acquire(int arg):以独占模式获取对象,忽略中断. acquireInte ...

  4. 【Java并发编程实战】-----“J.U.C”:Exchanger

    前面介绍了三个同步辅助类:CyclicBarrier.Barrier.Phaser,这篇博客介绍最后一个:Exchanger.JDK API是这样介绍的:可以在对中对元素进行配对和交换的线程的同步点. ...

  5. 【Java并发编程实战】-----“J.U.C”:CountDownlatch

    上篇博文([Java并发编程实战]-----"J.U.C":CyclicBarrier)LZ介绍了CyclicBarrier.CyclicBarrier所描述的是"允许一 ...

  6. 【Java并发编程实战】-----“J.U.C”:CyclicBarrier

    在上篇博客([Java并发编程实战]-----"J.U.C":Semaphore)中,LZ介绍了Semaphore,下面LZ介绍CyclicBarrier.在JDK API中是这么 ...

  7. 【Java并发编程实战】-----“J.U.C”:ReentrantReadWriteLock

    ReentrantLock实现了标准的互斥操作,也就是说在某一时刻只有有一个线程持有锁.ReentrantLock采用这种独占的保守锁直接,在一定程度上减低了吞吐量.在这种情况下任何的"读/ ...

  8. 【Java并发编程实战】-----“J.U.C”:Semaphore

    信号量Semaphore是一个控制访问多个共享资源的计数器,它本质上是一个"共享锁". Java并发提供了两种加锁模式:共享锁和独占锁.前面LZ介绍的ReentrantLock就是 ...

  9. 【Java并发编程实战】-----“J.U.C”:ReentrantLock之三unlock方法分析

    前篇博客LZ已经分析了ReentrantLock的lock()实现过程,我们了解到lock实现机制有公平锁和非公平锁,两者的主要区别在于公平锁要按照CLH队列等待获取锁,而非公平锁无视CLH队列直接获 ...

随机推荐

  1. kubernetes 安装学习

    什么是Kubernetes Kubernetes是一个开源平台,用于跨主机群集自动部署,扩展和操作应用程序容器,提供以容器为中心的基础架构. 使用Kubernetes,您可以快速高效地响应客户需求: ...

  2. Jenkins+Github(Robotframework代码)

    个人记录,且为Windows10系统,仅供参考. 一. 准备 1. Github:安装git.注册github.将Robotframework代码更新到github. 2. Jenkins安装,并安装 ...

  3. 【gulp】imageisux安装(webp图片)

    此篇是imageisux的安装教程,imageisux用于处理任何格式图片生成新的webp格式 安装前提 nodejs—npm—gulp 现下以我的配置来展示安装gulp-imageisux过程 1) ...

  4. 解决vue跨域axios异步通信

    在项目中,常常需要从后端获取数据内容.特别是在前后端分离的时候,前端进行了工程化部署,跨域请求成了一个前端必备的技能点.好在解决方案很多. 在vue中,在开发中,当前使用较多的是axios进行跨域请求 ...

  5. PCL利用RANSAC自行拟合分割平面

    利用PCL中分割算法. pcl::SACSegmentation<pcl::PointXYZ> seg; ,不利用法线参数,只根据模型参数得到的分割面片,与想象的面片差距很大, pcl:: ...

  6. mysql 系统用户最大文件打开数限制

    纸上得来终觉浅,绝知此事多宕机...记录一下自己很蠢的一次故障处理过程. 上周的时候,一个刚上线的系统又开始反映登不上了,因为最近这个系统也老是出现这个问题,开发也一直在找问题中,所以也没太在意.于是 ...

  7. JavaWeb基础—MySQL入门小结

    一.数据库概述 RDBMS:关系型数据库管理系统 == 管理员(manager)+仓库(database) 常见数据库:  Oracle(神喻):甲骨文 MySQL: 归于甲骨文旗下(高版本系统已经开 ...

  8. temp-2017-4-20

    ------- p{font-size:20px;color:red;} uuuuuuuuuuu package com.wgscd.gwang.myapplication; /** Created ...

  9. zookeeper入门实例

    package org.merit.test.zookeepertest; import java.io.IOException;import java.util.List;import java.u ...

  10. 20145234黄斐《网络对抗技术》实验八、Web基础

    Apache 先通过apachectl start命令开启Apach,使用netstat -aptn命令查看端口占用: 因为端口号80已经被占用(上次实验设置的),所以先修改/etc/apache2/ ...