题目大意:给你$n,k(n\leqslant10^9,k\leqslant10^3)$,求$f_n$。$f$数组满足$f_1=f_2=\cdots=f_k=1$,$f_n=\sum\limits_{i=n-k}^{n-1}f_i$

题解:线性齐次递推:
$$
\left[
\begin{matrix}
f_1&f_2&\cdots&f_k
\end{matrix}
\right]
\left[
\begin{matrix}
0&0&0&\cdots&0&1\\
1&0&0&\cdots&0&1\\
0&1&0&\cdots&0&1\\
0&0&1&\cdots&0&1\\
\vdots&\vdots&\ddots&\ddots&\vdots&\vdots\\
0&0&0&\cdots&1&1
\end{matrix}
\right]
=
\left[
\begin{matrix}
f_2&f_3&\cdots&f_{k+1}
\end{matrix}
\right]
$$
特征多项式$G_k(x)$为:
$$
\begin{align*}
G_k(x)&=|\lambda I-A|\\
&=\left|
\left[
\begin{matrix}
\lambda&0&0&\cdots&0&-1\\
-1&\lambda&0&\cdots&0&-1\\
0&-1&\lambda&\cdots&0&-1\\
0&0&-1&\cdots&0&-1\\
\vdots&\vdots&\ddots&\ddots&\vdots&\vdots\\
0&0&0&\cdots&-1&\lambda-1
\end{matrix}
\right]\right|
\end{align*}
$$
可以对第一行展开
$$
\begin{align*}
G_k(x)&=(-1)^{1+1}\lambda G_{k-1}(x)+(-1)(-1)^{k-1}(-1)^{k+1}\\
&=\lambda G_{k-1}(x)-1\\
&=\lambda^k-\lambda^{k-1}-\lambda^{k-2}-\cdots-1
\end{align*}
$$
发现模数是$10^9+7$,但是$k$只有$10^3$,所以直接$O(k^2)$卷积和取模,总复杂度$O(k^2\log_2n)$

卡点:

C++ Code:

#include <algorithm>
#include <cstdio>
#include <cstring>
#define maxn 2010
const int mod = 1e9 + 7; #define mul(x, y) static_cast<long long> (x) * (y) % mod
inline void reduce(int &x) { x += x >> 31 & mod; } int n, K;
int f[maxn], g[maxn]; void PW(int n) {
if (n == 0) { f[0] = 1; return ; }
PW(n >> 1);
std::memset(g, 0, K << 3);
for (int i = 0; i < K; ++i)
for (int j = 0; j < K; ++j)
reduce(g[i + j + (n & 1)] += mul(f[i], f[j]) - mod);
for (int i = K + K - 1 + (n & 1); i >= K; --i) {
for (int j = 1; j <= K; ++j) reduce(g[i - j] += g[i] - mod);
}
std::memcpy(f, g, K << 2);
} int main() {
scanf("%d%d", &K, &n);
PW(n - 1);
int ans = 0;
for (int i = 0; i < K; ++i) reduce(ans += f[i] - mod);
printf("%d\n", ans);
return 0;
}

  

[AT697]フィボナッチ的更多相关文章

  1. [转帖]SPARC简介

    https://www.cnblogs.com/chaohm/p/5674886.html 1.    概述 SPARC(Scalable Processor ARChitecture,可扩展处理器架 ...

随机推荐

  1. git解决代码提交冲突

    树冲突文件名修改造成的冲突,称为树冲突.比如,A同事把文件改名为A.C,B同事把同一个文件改名为B.C,那么B同事将这两个commit合并时,会产生冲突.如果最终确定用B同事的文件名,那么解决办法如下 ...

  2. java中JVM的原理

    转载:https://blog.csdn.net/witsmakemen/article/details/28600127 一.java虚拟机的生命周期: Java虚拟机的生命周期 一个运行中的Jav ...

  3. GlusterFS分布式存储集群-2. 使用

    参考文档: Quick Start Guide:http://gluster.readthedocs.io/en/latest/Quick-Start-Guide/Quickstart/ Instal ...

  4. python—启动自带shell时报错(丢失api-ms-win-crt-runtime-l1-1-0.dll)已解决

    备注: 有的伙伴安装完1后重启,问题可以解决,summer儿在安装完1依然未能解决,于是又进行了2的安装再次重启后问题解决!! 1,安装vc-redist.x64,微软官网搜索免费下载,安装后重启. ...

  5. HDU 1556 Color the ball (一维树状数组,区间更新,单点查询)

    中文题,题意就不说了 一开始接触树状数组时,只知道“单点更新,区间求和”的功能,没想到还有“区间更新,单点查询”的作用. 树状数组有两种用途(以一维树状数组举例): 1.单点更新,区间查询(即求和) ...

  6. oracle删除死锁进程

    在命令行下运行: select SID,SERIAL# from v$session t1, v$locked_object t2 where t1.sid = t2.SESSION_ID; alte ...

  7. Bing词典vs有道词典比对测试报告

    功能篇 核心功能测评:http://www.cnblogs.com/C705/p/4075554.html 细节与用户体验:http://www.cnblogs.com/C705/p/4077112. ...

  8. 20172324《Java程序设计》第二周学习总结

    20172324<Java程序设计>第2周学习总结 教材学习内容总结 了解了字符串及其拼接和转义序列的使用. Java的基本数据类型. 定义数据转换类型和实现其转换的方法. Scanner ...

  9. 2017-2018-2学期 20172324《Java程序设计》第六周学习总结

    20172324<Java程序设计>第六周学习总结 教材学习内容总结 如何创建数组以及int[] X与int X[]的区别(编译时是没有差别的,只是前者与其他类型的声明方式有一致性) 每一 ...

  10. CefSharp,Winform程序中加载web网页

    源码地址:https://github.com/cefsharp/CefSharp 开源相关:https://github.com/cefsharp/CefSharp/tree/master/CefS ...