BZOJ2339 HNOI2011卡农(动态规划+组合数学)
考虑有序选择各子集,最后除以m!即可。设f[i]为选i个子集的合法方案数。
对f[i]考虑容斥,先只满足所有元素出现次数为偶数。确定前i-1个子集后第i个子集是确定的,那么方案数为A(2n-1,i-1)。
显然不能为空集,于是去掉前i-1个已经满足限制的方案,也即f[i-1]。
然后去掉第i个子集和之前重复的情况。显然如果有重复,将这两个去掉后仍然是合法的。那么方案数为f[i-2]*(i-1)*(2n-1-(i-2))。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define P 100000007
#define N 1000010
int n,m,f[N],inv[N],p,A[N];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2339.in","r",stdin);
freopen("bzoj2339.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
p=;for (int i=;i<=n;i++) p=(p<<)%P;p--;
inv[]=;
for (int i=;i<=m;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P;
for (int i=;i<=m;i++) inv[i]=1ll*inv[i]*inv[i-]%P;
A[]=;for (int i=;i<=m;i++) A[i]=1ll*A[i-]*(p-i++P)%P;
f[]=;f[]=;
for (int i=;i<=m;i++) f[i]=((A[i-]-f[i-]+P)%P-1ll*f[i-]*(i-)%P*(p-i++P)%P+P)%P;
cout<<1ll*f[m]*inv[m]%P;
return ;
}
BZOJ2339 HNOI2011卡农(动态规划+组合数学)的更多相关文章
- [BZOJ2339][HNOI2011]卡农
[BZOJ2339][HNOI2011]卡农 试题描述 输入 见"试题描述" 输出 见"试题描述" 输入示例 见"试题描述" 输出示例 见& ...
- bzoj2339[HNOI2011]卡农 dp+容斥
2339: [HNOI2011]卡农 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 842 Solved: 510[Submit][Status][ ...
- BZOJ2339[HNOI2011]卡农——递推+组合数
题目链接: [HNOI2011]卡农 题目要求从$S=\{1,2,3……n\}$中选出$m$个子集满足以下三个条件: 1.不能选空集 2.不能选相同的两个子集 3.每种元素出现次数必须为偶数次 我们考 ...
- 【BZOJ2339】[HNOI2011]卡农 组合数+容斥
[BZOJ2339][HNOI2011]卡农 题解:虽然集合具有无序性,但是为了方便,我们先考虑有序的情况,最后将答案除以m!即可. 考虑DP.如果我们已经知道了前m-1个集合,那么第m个集合已经是确 ...
- 【BZOJ2339】卡农(递推,容斥)
[BZOJ2339]卡农(递推,容斥) 题面 BZOJ 题解 先简化一下题意: 在\([1,2^n-1]\)中选择不重复的\(m\)个数,使得他们异或和为\(0\)的方案数. 我们设\(f[i]\)表 ...
- P3214 [HNOI2011]卡农
题目 P3214 [HNOI2011]卡农 在被一题容斥\(dp\)完虐之后,打算做一做集合容斥这类的题了 第一次深感HNOI的毒瘤(题做得太少了!!) 做法 求\([1,n]\)组成的集合中选\(m ...
- [HNOI2011]卡农
题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的 ...
- [HNOI2011]卡农 题解
题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的 ...
- [HNOI2011]卡农 (数论计数,DP)
题面 原题面 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则. 他将声音分成 n n n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 1 1 ...
随机推荐
- 【PaPaPa】实现缓存决策 - 让你的缓存变的有智慧
我有话说 本来这一篇我打算放到后面再说,可是之前泄漏了一点关于缓存决策的代码后被好多人催更了. 在此感谢大家的支持,让我更有动力的写这个系列.你们的关注让我觉得我的决定是对的,我会坚持下去把这个项目做 ...
- linux下的静态库与动态库
目录 静态库 定义: 生成及使用方法: 静态库的优缺点 动态库 定义: 生成及使用方法: 动态库优缺点: 静态库 先说说我们为什么需要库? 当有些代码我们大量会在程序中使用比如(scanf,print ...
- 通过XML文件实现人物之间的对话
一.建立一个XML文档,放在项目中Assert/Resources/XML文件下 XML的内容如下: <?xml version="1.0" encoding="u ...
- git push失败
不知道弄错了什么上传项目到github上失败 git commit的时候提示 On branch masternothing to commit, working tree clean git pus ...
- 从零系列--开发npm包(二)
一.利用shell简化组合命令 set -e CVERSION=$(git tag | ) echo "current version:$CVERSION" echo " ...
- POJ 3468 A Simple Problem with Integers(分块入门)
题目链接:http://poj.org/problem?id=3468 A Simple Problem with Integers Time Limit: 5000MS Memory Limit ...
- ossec代理
代理端 OSSEC有两种代理端:可安装的代理端和哑代理端(免安装).可安装的代理端被安装在主机上,通过OSSEC的加密协议将主机的信息发送到OSSEC服务器.亚代理端则不需在远端主机进行安装.他作为O ...
- 使用 PropTypes 进行类型检查
注意: 从 React v15.5 开始 ,React.PropTypes 助手函数已被弃用,建议使用 prop-types 库 来定义contextTypes. 1 2 3 4 5 6 7 8 9 ...
- Python 中的一些小技巧
这里是本人收集的一些 Python 小技巧,目前主要是一些实用函数,适合有一定基础的童鞋观看(不会专门介绍使用到的标准库函数).. 一.函数式编程 函数式编程用来处理数据,感觉很方便.(要是再配上管道 ...
- Python基础_异常处理与跟踪
异常的种类 AttributeError 试图访问一个对象没有的树形,比如foo.x,但是foo没有属性x IOError 输入/输出异常:基本上是无法打开文件 ImportError 无法引入模块或 ...