题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1114

Piggy-Bank

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 32136    Accepted Submission(s): 15965

Problem Description
Before ACM can do anything, a budget must be prepared and the necessary financial support obtained. The main income for this action comes from Irreversibly Bound Money (IBM). The idea behind is simple. Whenever some ACM member has any small money, he takes all the coins and throws them into a piggy-bank. You know that this process is irreversible, the coins cannot be removed without breaking the pig. After a sufficiently long time, there should be enough cash in the piggy-bank to pay everything that needs to be paid.

But there is a big problem with piggy-banks. It is not possible to determine how much money is inside. So we might break the pig into pieces only to find out that there is not enough money. Clearly, we want to avoid this unpleasant situation. The only possibility is to weigh the piggy-bank and try to guess how many coins are inside. Assume that we are able to determine the weight of the pig exactly and that we know the weights of all coins of a given currency. Then there is some minimum amount of money in the piggy-bank that we can guarantee. Your task is to find out this worst case and determine the minimum amount of cash inside the piggy-bank. We need your help. No more prematurely broken pigs!

 
Input
The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing two integers E and F. They indicate the weight of an empty pig and of the pig filled with coins. Both weights are given in grams. No pig will weigh more than 10 kg, that means 1 <= E <= F <= 10000. On the second line of each test case, there is an integer number N (1 <= N <= 500) that gives the number of various coins used in the given currency. Following this are exactly N lines, each specifying one coin type. These lines contain two integers each, Pand W (1 <= P <= 50000, 1 <= W <=10000). P is the value of the coin in monetary units, W is it's weight in grams.
 
Output
Print exactly one line of output for each test case. The line must contain the sentence "The minimum amount of money in the piggy-bank is X." where X is the minimum amount of money that can be achieved using coins with the given total weight. If the weight cannot be reached exactly, print a line "This is impossible.".
 
Sample Input
3
10 110
2
1 1
30 50
10 110
2
1 1
50 30
1 6
2
10 3
20 4
 
Sample Output
The minimum amount of money in the piggy-bank is 60.
The minimum amount of money in the piggy-bank is 100.
This is impossible.
分析:
完全背包问题,注意初始化:
1.要求恰好装满背包(恰好装满存钱罐)
memset(dp,0x3f,sizeof(dp));//无穷大
dp[0]=0;
2.找的是最小值,把max改为min
 dp[j]=min(dp[j],dp[j-w[i]]+v[i]);
代码如下:
#include<bits/stdc++.h>
#define max_v 10005
using namespace std;
int v[max_v],w[max_v];
int dp[max_v];
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int x1,x2,c;
scanf("%d %d",&x1,&x2);
c=abs(x1-x2);
int n;
scanf("%d",&n);
for(int i=;i<n;i++)
{
scanf("%d %d",&v[i],&w[i]);
}
memset(dp,0x3f,sizeof(dp));//无穷大 //要求恰好装满背包
dp[]=;
for(int i=;i<n;i++)
{
for(int j=w[i];j<=c;j++)
{
dp[j]=min(dp[j],dp[j-w[i]]+v[i]);
}
}
if(dp[c]==dp[max_v-])
{
printf("This is impossible.\n");
}else
{
printf("The minimum amount of money in the piggy-bank is %d.\n",dp[c]);
}
}
return ;
}
 

HDU 1114(没有变形的完全背包)的更多相关文章

  1. HDU 1114:Piggy-Bank(完全背包)

    Piggy-Bank Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

  2. hdu 1114需要装满的完全背包 重点是背包初始化的问题

    .,. 最近在看背包九讲 所以就刷了一下背包的题目 这道题目是一个典型的完全背包问题 而且要求满包 在这里 我就简单整理一下背包初始化问题吧 对于没有要求满包的问题 也就是背包可以不取满的问题 在背包 ...

  3. HDOJ(HDU).1114 Piggy-Bank (DP 完全背包)

    HDOJ(HDU).1114 Piggy-Bank (DP 完全背包) 题意分析 裸的完全背包 代码总览 #include <iostream> #include <cstdio&g ...

  4. HDU 1114 完全背包 HDU 2191 多重背包

    HDU 1114 Piggy-Bank 完全背包问题. 想想我们01背包是逆序遍历是为了保证什么? 保证每件物品只有两种状态,取或者不取.那么正序遍历呢? 这不就正好满足完全背包的条件了吗 means ...

  5. Piggy-Bank(HDU 1114)背包的一些基本变形

    Piggy-Bank  HDU 1114 初始化的细节问题: 因为要求恰好装满!! 所以初始化要注意: 初始化时除了F[0]为0,其它F[1..V]均设为−∞. 又这个题目是求最小价值: 则就是初始化 ...

  6. HDU 1114 Piggy-Bank(一维背包)

    题目地址:HDU 1114 把dp[0]初始化为0,其它的初始化为INF.这样就能保证最后的结果一定是满的,即一定是从0慢慢的加上来的. 代码例如以下: #include <algorithm& ...

  7. hdu 1114 dp动规 Piggy-Bank

    Piggy-Bank Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit S ...

  8. HDU 5234 Happy birthday --- 三维01背包

    HDU 5234 题目大意:给定n,m,k,以及n*m(n行m列)个数,k为背包容量,从(1,1)开始只能往下走或往右走,求到达(m,n)时能获得的最大价值 解题思路:dp[i][j][k]表示在位置 ...

  9. 怒刷DP之 HDU 1114

    Piggy-Bank Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit S ...

随机推荐

  1. mysql_real_escape_string与mysqli_real_escape_string

    参考 mysql_real_escape_string  mysqli_real_escape_string mysql_real_escape_string是用来转义字符的,主要是转义POST或GE ...

  2. JavaScript、HTML、CSS学习—思维导图

  3. 格式化字符串漏洞利用实战之 njctf-decoder

    前言 格式化字符串漏洞也是一种比较常见的漏洞利用技术.ctf 中也经常出现. 本文以 njctf 线下赛的一道题为例进行实战. 题目链接:https://gitee.com/hac425/blog_d ...

  4. 抓取远程master分支到本地,并与UI分支合并

    1.pull (1)UI:  git add . git commit -m   git checkout master (2)master:  git pull origin master  git ...

  5. leveldb源码分析--Key结构

    [注]本文参考了sparkliang的专栏的Leveldb源码分析--3并进行了一定的重组和排版 经过上一篇文章的分析我们队leveldb的插入流程有了一定的认识,而该文设计最多的又是Batch的概念 ...

  6. python之mechanize模拟浏览器

    安装 Windows: pip install mechanize Linux:pip install python-mechanize 个人感觉mechanize也只适用于静态网页的抓取,如果是异步 ...

  7. ORACLE闪回机制分析与研究应用

    1.查看数据库归档和闪回状态,及环境准备SQL> archive log list;SQL> select flashback_on from v$database;关闭数据库,启动归档和 ...

  8. 记录Ubuntu14.04 LTS版本中使用Docker的过程

    sudo apt-get update sudo apt-get install \ apt-transport-https \ ca-certificates \ curl \ software-p ...

  9. [翻译] RAReorderableLayout

    RAReorderableLayout A UICollectionView layout which you can move items with drag and drop. 一种UIColle ...

  10. Celery学习---Celery 与django结合实现计划任务功能

    项目的目录结构: 项目前提: 安装并启动Redis 安装Django和Celery的定时任务插件 安装方法一: pip直接安装[安装了pip的前提下] omc@omc-virtual-machine: ...